
ERW

The Manual

Sebastiano Vigna

ERW: The Manual
by Sebastiano Vigna

Copyright © 2001, 2002, 2003, 2004, 2005 Sebastiano Vigna.

Permission is granted to copy, distribute and/or modify thi s document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version pub lished by the Free Software Foundation; with no Invariant
Sections, with the Front–Cover Texts being “ERW”,“The Manu al”,“Sebastiano Vigna” and with no Back–Cover Text. A
copy of the license is included in the appendix entitled “GNU Free Documentation License”.

Table of Contents
Preface..vii

A Simple Example ..viii
1. Overall System Design ..1

Entity-Relationship Schemata ..1
Cardinality Constraints ...3
Weak Entities...5
Subtyping ..5
Rei�cation ..6
Concurrency ..7

2. ERL: an Entity-Relationship Language ..9
A Quick Tour ...9
Types and Identi�ers ...9

The enum type ..10
The fset type ..10

Elements ..10
erl ..10
enumval ...11
enum ...11
fset...12
attr ...12
isa ..15
ent..15
leg..16
rel...17

3. The User Interface ...19
Stateless Editing..19
Simulating Remote Procedure Calls..20
State Discrepancies...20
Caching ..21

4. Customisation ..23
User Interface Customisation ...24

ERL Types vs. ERW Types...25
Attribute Speci�ers ...27

Custom Files..28
The Type Array ...29
Customising Labels ..29
Ordering Elements ...33
Customising Filters ...33

Hooks ...35
The Lock Hook ..36
The Pre-update Hook ...36
The Post-update Hook ...37
The Deletion Hooks ..38
The Post-Authorisation Hook ...38
The Selection-load Hook..39
The Button Hook ...39
The Button Inhibition Hook ..41
The Form-Loading Hook ...41

Custom Forms...41
Form Resolution..42
ERF: an Entity-Relationship Form Language ...42

iii

5. Authentication and Authorisation ..47
Custom Authentication ...47
The Authorisation System ..47
Changing Owner ..48
The Selection Level Tuning...49
Restrictions on Element-Based Authorisation ...49

6. Transaction Support ...51
7. Installation and Con�guration ...53

The Run-Time Environment ...53
The ERW-conf.php Initialisation File ..53
Con�guring PHP ..56
Con�guring HTMLArea ...57
Con�guring FCKeditor ...58
Con�guring JSCalendar ..58

8. ERtool ...61
Options ..61
Checks..62
Error Messages...63
The DOT graphical back-end ...63
The ERW Graphical Notation ...64

Entity Types ...65
Relationship Types ...66

9. Standards and Browser Requirements ...71
10. Useful Functions ...73

Database Functions..73
JavaScript Functions..74

11. Localisation ..75
Language Con�guration Variables ..75
Other Localisation Variables ...75
UTF-8 Support ..75

12. Script Reference ..77
ERW/checkERW.php ..77
ERW/checkdb.php ..77
ERW.php..77
list.php ...77
form.php ...77
default.php ...78
chown.php ...78
setprefs.php ...78

13. Troubleshooting ..79
ERtool problems ..79
PHP problems ...79
SQL problems ...79
Con�guration and Customisation Problems ..79
When Nothing Seems to Work ...79
Reporting Bugs ...80

A. GNU Free Documentation License ..81
Preamble..81
Applicability and De�nitions ...81
Verbatim Copying ..82
Copying in Quantity ..82
Modi�cations ..83
Combining Documents ...84
Collections of Documents ...84
Aggregation With Independent Works ...84
Translation ...85

iv

Termination ...85
Future Revisions of This Licence ...85

v

vi

Preface

ERW is a system for managing complex (and possibly large) dat abases using a web
browser. Its original purpose was content management, that is, allowing easy main-
tenance of web site data organised in a database in a heterogeneous environment,
where little is known about client machines except that they will have a web browser.

ERW is based on a formal description of the database in a variant of the common
entity-relationship model (more precisely, of what it is us ually called the extended
entity-relationship model). An XML-based language, ERL (Entity-Relationship
Language), is used to de�ne formally a entity-relationship schemathat provides a
conceptual description of the database.

From the ERL-based description, a Java™ preprocessing tool, ERtool , rei�es the
schema, that is, it transforms the description based on enti ties and relationships in
a set of tables that suitably implement that description. Mo reover, it generates a
graphical representation of the schema and documentation about the rei�cation
process; this documentation allows you to understand exact ly how the process was
carried out. And, last but not least, it generates a set of con�guration �les written in
PHP. These �les, when fed into the provided run-time PHP envi ronment, generate
a set of forms that allows easy editing of the database. A �exi ble customisation
process allows you to tune the forms to your needs.

Where is the difference with other web-based database admin istration tools? The
point is that ERW knows the abstract structure of the databas e, and thus can offer
a much more sophisticated interface to the user. In particul ar, the user never sees
an SQL table: rather, it is presented with relation-based op erations such as “associate
this element to this element”. The run-time environment (us ing the con�guration �les
produced starting from the ERL �le) will modify the database tables correspondingly.

Just to make a comparison, a tool like PHPmyAdminis to ERW as a disassembler is to
a compiler/run-time environment. You can of course use PHPmyAdminto do raw ad-
ministration of the database tables generated by ERW, but the knowledge that ERW
has of the abstract structure of the entity-relationship sc hema gives it the possibil-
ity of interpreting the same tables in a deeper way. Of course , ERW can only edit
databases rei�ed by ERtool , so it is less general.

These are not, however, the only advantages of using ERW. We list some of them:

• ERW has support for a wide range of features of the extended entity-relationship
model, including multiple inheritance and multiple owners .

• ERW is entirely based on international standards and open-source tools. Since ev-
ery part of the system is known and documented, you are never l eft with an un-
usable bunch of data, or outdated form-generating scripts t hat no one remembers
how to modify. The system, moreover, is largely architectur e independent.

• ERW is free software distributed under the GNU General Publi c License1. How-
ever, applications built using ERW may be distributed under the license of your
choice (similarly to what happens to programs compiled with a free compiler).

• ERW maintains referentialand logicalintegrity of your database. That is to say, not
only editing cannot create dangling references, but also th e cardinality constraints
you have imposed will be automatically enforced; for instan ce, if every document
must have an author, then it will be impossible to insert a new document without
associating it with an author.

• ERW allows any number of users to access the database concurrently.

• ERW uses the W3C DOM to offer a rich and intuitive graphical in terface. This
interface comes at no cost once you have de�ned your entity-r elationship schema
in ERL.

• ERW supports gettext and UTF-8 everywhere: you can create forms and handle
content in any language.

vii

Preface

• ERW gives you for free user, group and element-based authori sation. Select, up-
date, insert and delete privileges can be set up separately.

• ERW is based on a subset of SQL-99 that will work on almost every DBMS, and
uses the PEAR2 database abstraction layer, so you are not bound to a particular
choice of DBMS.

• ERW uses ERL to de�ne additional data types (such as enums) th at are not avail-
able in SQL-99, and maps them to standard types.

• ERW provides �lesets, that is, set of �les with attributes that are related to an en tity.
This allows to easily add to the database multimedia data sto red in the �lesystem.

There are, of course, also some drawbacks. ERW makes a numberof assumptions on
the structure of the database and on the inner workings of you r entity-relationship
schema that prevents you from doing certain things:

• ERW is based on local editing: each entity has a corresponding editing form, and
from that form you can edit that entity and adjacent relation ships, but you cannot
edit other components of your entity-relationship schema (you can, of course, from
their respective forms).

• ERW uses a conservative approach in deletions: whenever an element is deleted,
all incident relations are also deleted, unless this would b reak logical integrity, in
which case the deletion cannot be performed. This is in contr ast with the cascading
approach, in which the deletion of an element can cause deletions of other elements
so to maintain logical integrity. Cascade deletions would b reak the local editing
paradigm, which is fundamental in ERW's design (there is an e xception to this
rules for weak entities, which are deleted together with any of their owners; see
the Section calledWeak Entitiesin Chapter 1).

• Presently ERW handles binary relationships only. If you rea lly need relationships
of greater arity, you will have to simulate them using fake we ak entities with mul-
tiple owners.

A Simple Example
Maybe at this point you are curious about ERW, but you still do not understand what
it exactly does. The easiest way to solve this problem is showing a simple example.

Suppose you have a library, and you would like to keep track of which users have (or
had) a certain book. To this purpose you set up a simple entity -relationship schema,
which has three entity types: person , subscriber and book . Book are lent to persons,
but certain persons subscribed to the library, and possibly donated some money.

The schema contains a relationship type loan going from person to book , and this
type has some attributes: �rst of all, the starting date startdate of the loan (this
attribute is clearly mandatory, as there is no loan without a start); then, the ending
date enddate of the loan (this attribute is optional, as the book could be c urrently
out); �nally, the attribute type that de�nes the type of the loan (long or short term).

The informal description of the entity-relationship schem a that we have just given is
formalised by the following ERL document:

<?xml version="1.0"?>

<!DOCTYPE erl PUBLIC "-//DSI//DTD ERL V1.2//EN" "file://e rl.dtd">

<erl id="library" title="A Library">

&ERWauth;

<enum id="termlen" type="char" size="1">
<enumval value="L" label="Long term"/>
<enumval value="S" label="Short term"/>

viii

Preface

</enum>

<ent id="person" label="Person">
<attr id="fname" label="First Name" size="30" mand="true "/>
<attr id="lname" label="Last Name" size="30" mand="true" />

</ent>

<ent id="subscriber" label="Subscriber">
<isa entref="person"/>
<attr id="card" label="Card number" type="int" mand="tru e"/>
<attr id="address" label="Address" mand="true"/>
<attr id="donation" label="Donation" type="numeric" siz e="11" scale="2"/>

</ent>

<ent id="book" label="Book">
<attr id="title" label="Title" mand="true"/>
<attr id="author" label="Author" size="40" mand="true"/ >
<attr id="publisher" label="Publisher" mand="true"/>
<attr id="isbn" label="ISBN Code"/>
<attr id="year" label="Year" type="integer"/>
<attr id="description" label="Description" type="text" />

</ent>

<rel id="loan" label="Loan">
<attr id="startdate" label="Start date" type="date" mand ="true"

default="'2001-01-01'"/>
<attr id="enddate" label="End date" type="date"/>
<attr id="duration" label="Type" type="enum" enumref="t ermlen" mand="true"/>
<leg entref="person" label="Borrowed..."/>
<leg entref="book" label="Lent to..."/>

</rel>

</erl>

There are several interesting features in this example. First of all, we include the sys-
tem entity &ERWauth; , which will automatically include the entity and relations hip
types that are necessary to handle authorisation. Then we declare astatic enumerative
type, that is, a function from values to labels. The database will store the values, but
the user will be always presented with the labels. Finally, w e declare the entity types
we are interested in: note that subscriber is declared as being aperson .

Then, we declare our only relationship type. The two leg XML elements tell ERW
which entity types must be related. Note also that we specify that the default value
for the start date of a loan is the �rst day of the current mille nnium (but, should
we be certain that our database fully supports the SQL standa rd, we could use, say,
CURRENT_DATE).

It is now time for a little bit of magic: assuming there is an em pty database named
test , and that the �le above is named library.xml , the command ertool --sql
<library.xml will print on standard output the instructions to create you r database.
Usually piping this code in a DBMS client with the right privi leges is enough to set
up completely the database.

Now we have the database, but we still cannot modify it. Assum ing that we
installed correctly the ERW PHP scripts in a directory serve d by Apache , we create
there a directory named defs , generate the de�nition �les with ertool --defs
<library.xml and move the PHP �les thus produced to the defs directory. These
�les contain information used by the PHP run-time environme nt to produce the
forms that handle the database.

Finally, you must set up a con�guration �le named ERW-conf.php that explains to
ERW which kind of DBMS you are using, the name of the database and so on. There
is a sample ERW-conf.orig.php �le that you can copy and modify.

You now need a way to access the scripts handling form. The ERW scripts include
a sample index.orig.php �le that can be used as a start page (copying it to

ix

Preface

index.php). If you do so, accessing with a browser the directory contai ning the
ERW scripts you should see a list of links named as the entitie s we de�ned in the
ERL �le (the list is automatically generated for testing pur pose only; the database
administrator should set up a nicer way to access the editing forms). Clicking on
them will lead you to the editing forms; for instance, to edit books you will get a list
looking like this:

Figure 1. An ERW list where you can choose books.

You can browse around, and �lter elements (to be true, the �lt er shown has been
customised). Once you �nd to the book you want to edit, you get to a form loo king
like this:

Figure 2. An ERW form for a book.

The �rst input elements allow you to edit the attributes of a b ook (note that you can
upload a description text �le). However, the rest of the form is concerned with editing
a relation: there is a list of entities (persons that borrowe d the book, in this case) and
you can create and delete relationships, or change their attributes.

Analogous forms exists for persons, but here we have an inter esting feature:

x

Preface

Figure 3. An ERW list where you can choose persons.

Note that you have the choice, when creating a new person, to m ake a subscriber or
not. In general, you can select any of the subtypes of the current entity type. In any
case, if you edit a person you will get the right form—a subscr iber, for instance, will
get something like this:

Figure 4. An ERW form for a subscriber.

You can also have a list of subscribers only: in this case, you can choose to have also
cynical �lters, such as the amount of donation:

Figure 5. An ERW list where you can choose subscribers.

Finally, in certain cases you may want to edit relationships directly. That is, you may
want to browse (with �ltering) and modify loans by themselve s:

xi

Preface

Figure 6. An ERW list where you can choose loans.

The forms thus generated may not really suit your needs. In th is case, you can try
to customise them. A simple form of customisation, for insta nce, is localisation: la-
bels and user interface elements can be translated in any language, and the correct
language for the user will be negotiated with the browser. Ho wever, you can also
de�ne your own forms using ERF, an XHTML-like language; here we have a simple,
self-explanatory example for a subscriber:

<?xml version="1.0"?>
<!DOCTYPE erf PUBLIC "-//DSI//DTD ERF V1.0//EN" "file://e rf.dtd">
<erf ref="subscriber">

<style type="text/css">
fieldset { background: #B0B0B0; border: solid black }
legend { background: #808080; border: black solid thin }

</style>
<fieldset>

<legend style="background: #E0E0E0">User Data</legend>
<input ref="person.fname" size="20"/>
<input ref="person.lname" size="20"/>
<input ref="address" size="80"/>

</fieldset>

<fieldset>
<legend>Subscription Data</legend>
<input ref="card" size="8"/>
<input ref="donation"/>

</fieldset>

<p>You can see loan details by clicking on them.
However, you are not
allowed to modify loan data.</p>

<list ref="person.loan_book" readonly="true"/>
</erf>

The resulting form would look as follows:

xii

Preface

Figure 7. A customised form, with a read-only relationship d isplay.

Essentially, we freely described a page where ERF input elements are replaced by
ERW's input controls: besides changing the look of the page u sing style sheet, we
can also set the size of the text inputs, force elements to be read only, and so on.

This example should have given a taste of ERW capabilities. Browsing this manual
you can also �nd how to generate documentation and graphical layouts . To appreci-
ate the power of conceptual modelling, you should think of sc hemata with hundreds
of entities, complex type hierarchies and ownerships, whic h ERW will handle with
the same ease.

Notes
1. http://www.gnu.org/copyleft/gpl.html

2. http://pear.php.net/

xiii

Preface

xiv

Chapter 1. Overall System Design

ERW is a complex system with many interrelated components, s o before starting to
describe in detail each part it is a good idea to review a bit mo re technically the
procedure to generate and manage a database using it.

1. The �rst and most important step is the creation of an ERL �l e. ERL is a simple
XML-based language that describes entity-relationship schemata decorated with
additional information pertaining the actual database str ucture (such as the SQL
types of the attributes) and some editing information (such as which relationships
can be edited in an entity form). ERL has also support for simu lated SQL types,
that is, additional types that you can use as if they where act ual SQL types. They
include, for instance, boolean and enum.

2. Then, you have to create your database. This is accomplished using ERtool , a tool
written in Java™ that reads ERL �les and produces a number of o utputs. The �rst
usage of ERtool is to generate SQL code creating the actual database. Note that
in this phase ERtool has to reify the entity-relationship schema, that is, to decide
how to implement in the relational model the entity-relatio nship schema given in
the ERL �le (ERtool can also generate documentation on the rei�cation process,
so you can really know what it's doing).

3. Assuming that you installed ERW correctly (which include s
con�guring PHP and Apache), you now have to generate the de�nition �les:
these are PHP �les that contains information about the datab ase. They are
essentially a reworking of the data contained in the origina l ERL �le. The
de�nition �les are read by the PHP scripts of ERW's run-time e nvironment to
produce the actual forms.

De�nitions �les are again generated by ERtool using the ERL �le, and should be
moved in a place where the run-time environment can �nd them (to this purpose
there is a con�guration variable that can be set).

4. Other con�guration variables let you choose the type of DB MS, localisation fea-
tures, and so on. Once everything is set up, your are ready to edit the database.
You should provide a method to access the editing scripts with the right URL. A
sample �le, index.orig.php , can be used as a �rst try.

5. There are however several things that you could not like in the forms thus created.
For instance, if you have a two-elements enumerative type (say, male or female)
you could prefer a radio button to a drop-down menu. Or you cou ld not like the
way an element is labelled (by default, using its �rst attrib ute). For such things,
ERW lets you write custom �les, which alter some of the data of the de�nition
�les so to tune the user interface to your needs. Custom �les a lso allow you to
implant hooks in the run-time environment so that you can, for instance, do some
post-processing after every database modi�cation. 1

6. If you need more �exibility in the user interface, custom forms can be used to pro-
vide a highly customised appearance. Custom forms are writt en in an XHTML-
like language, so you can use style sheets, etc.

7. Finally, you may want to change the structure of your datab ase. From the user
interface viewpoint this can be done in a breeze, as it is just a matter of modify-
ing the ERL �le and regenerate the de�nition �les. However, t he changes to the
database structure must be handled manually. Usually it is a good idea to keep a
copy of the previously generated SQL statements and see the differences. In any
case, simple changes such as adding or removing attributes,entities and relation
are almost effortless, and the checkdb.php script can help you by pointing out
discrepancies between de�nition �les and SQL tables.

1

Chapter 1. Overall System Design

Entity-Relationship Schemata
To understand each other throughout the rest of this manual, we have to set up a
minimal common language. Unfortunately, many terms in the d atabase world are
not completely standard, and can vary depending on the textb ook you have. A rad-
ical choice made in this manual is to replace, whenever possible, database-related
names for sets and functions with the more standard and more s table terms used
by mathematicians. If you never heard of entity-relationsh ip schemata (or of their
graphical counterpart, entity-relationship diagrams), however, we suggest you to have
�rst a look at a good textbook on the subject.

Entities model things of the real world. In our library example, a (spe ci�c) person
and a (speci�c) book are both entities, because these are thethings we want to model
(we could call entities “things”, but this would not sound ve ry scholarly). Each entity
has atype. Entity types model concepts: in our example, entity types w ill be person ,
subscriber and book . To an entity type we associate usually a set of attributes, that
is, pieces of information: the book title, the person name, t he subscriber donation and
so on. Each entity de�nes a value for each attribute of its typ e (e.g. for each person
there must be a name).

Relationships, on the other hand, model connections between things. For in stance, a
book may be on loan (or have been lent) to a person or not. Also r elationships have a
type, and may have attributes: for instance, the start and en d date of the lent.

An entity-relationship schemais a directed2 graph whose nodes are entity types, and
whose arcs are relationship types. In other words, a schema is given by a set of entity
types and a set of relationship types, where each relationship type is assigned a source
entity type and a targetentity type. In our example, the set of entity types is { person ,
subscriber , book }, whereas the set of relationship types is { loan }. The relationship
type loan has source entity type person and target entity type book .

An instanceof an entity-relationship schema is a sort of abstract database. It is given
by a set for each entity type (called an entity set), and a multirelation3 for each relation-
ship type. Not surprisingly, elements of the set associated to an entity type are called
entities, and elements of the multirelation associated to a relationship type are called
relationships.

A multirelation is an extension of the mathematical concept of relation; in a mul-
tirelation from a set X to a set Y two elements can be in relatio n “more than once”.
Mathematically, a multirelation from the set X to the set Y is a set R (thesupportof
the multirelation) equipped with two legs4, that is, two functions R

0
:R �! X and R

1
:

R �! Y. A multirelation should be interpreted as follows: if ther e is an element r of R
such that R

0
(r)=x and R

1
(r)=y, then x and y are related (once). But if there is another

element s of R such as R
0
(s) and R

1
(s)=y, then x and y are related twice, and so on. If

there are no elements of X and Y that are related twice, then R is a standard relation.
It will be useful in the following to note that given a multire lation R from X to Y,
we can build a multirelation R T, called the transposeof R, going from Y to X, simply
exchanging the rÃ´le of R

0
and R

1
.

Getting back to entity-relationship schema instances, we note that if a relationship
type goes from an entity type instantiated in a set X to an enti ty type instantiated in
a set Y, then the multirelation instantiating it must go from X to Y.

In our example, an instance of the database speci�es a set of persons, a set of sub-
scribers, a set of books and a multirelation for loans. Each loan (i.e., each element of
the support of the multirelation) has an assigned person and book, and, of course,
the same person can borrow the same book several times (so we really need a mul-
tirelation).

Finally, an instance of an entity-relationship schema speci�es for each entity set and
multirelation a function that assigns to each element its at tributes. A precise de�ni-
tion of this function would require a precise de�nition of th e attributes and of their
Cartesian products, and it is beyond the scope of this section.

2

Chapter 1. Overall System Design

Getting it all together: entity-relationship schemata are a syntax that allows you to
model some real-world objects and their connections. Each schema has, however, a
semantics: its instances. The purpose of a database managed by ERW is tostore an
instance of an entity-relationship schema and let the user m odify it.

Important: The discussion above may have bored some reader, but it is necessary be-
cause ERW implements on the top of a standard SQL database the multirelational se-
mantics of entity-relationship schemata described in “Multirelational Semantics for Ex-
tended Entity-Relationship Schemata With Applications”, Proc. of ER 2002, Lecture Notes
in Computer Science, Springer-Verlag, 2002. This semantics is much more precise and
natural than the “tuple semantics” of relational databases, and in fact it is a good idea to
think of relational databases in set-theoretic terms whenever you can.

Cardinality Constraints
An important feature of entity-relationship schemata is th e possibility of specifying
cardinality constraints. These are instructions of the form “every person has exactly
one mother”, or “every document must have at least an author (but possibly many)”.
There constraints are useful because they allow to maintain the logical integrityof the
database: in a logically integral database, you can always trust a document to have
an author, and you can avoid to check if it is missing. ERW main tains automatically
the logical integrity of your database.

An important point (often missed) about logical integrity i s that it is a feature of the
semantics of the entity-relationship schema, not of the underlying relational database. It must
be expressed abstractly in term of properties of multirelat ions, and not in term of the
particular relational implementation of the entity-relat ionship schema.

ERW uses a slight extension of the standard way of giving card inality constraints
on relations (as it has to handle multirelations). Recall th at each relationship type
is an arc going from an entity type (the source) to another ent ity type (the target).
Cardinality constraints restrain the possible multirelat ion that an instance can assign
to the relationship type. For each of the two entity types you can specify a pair of
indices between parentheses and separated by colon, as in(1:N) . The left character
may be 0 or 1, while the right character may be 1, N, or M.

The speci�ers assigned to a relationship provides restrict ions on the cardinality (i.e.,
the number of elements) of certain relationships in an insta nce of the schema. More
precisely:

• if the �rst character is 0, it imposes no bound;

• if the �rst character is 1, it forces each entity to be in relation with at least another
entity;

• if the second character isM, it imposes no bound;

• if the second character isN, then a multirelation instantiating the relationship type
must be a relation, that is, it cannot happen that entities ar e related twice;

• if the second character is 1, it forces each entity of to be in relation with at most
another entity (and it must be related once).

In other words, the �rst index is a lower bound on the cardinal ity of relationships
involving an entity, while the second index is a sort of upper bound. There are some
standard names: if the two pairs of indices are of the form (x :1) , then the relationship
type is said to be one-to-one; if one is of the form (x :1) and the other of the form
(x :N) , then the relationship type is said to be one-to-many; �nally, if the two pairs are
of the form (x :N) , then the relationship type is said to be many-to-many.

3

Chapter 1. Overall System Design

However, relations satisfying the restrictions above have standard mathematical
names, which we will use in what follows. More precisely, we s hall use the obvious
extensions of these names to multirelations. A multirelati on R from X to Y is said to
be:

total

if for each element x in X there is at least one r in R such that R
0
(r)=x;

monodrome (or a partial function)

if for each element x in X there is at most one r in R such that R
0
(r)=x;

surjective

if for each element y of Y there is at least one element r of R such that R
1
(r)=y.

injective

if for each element y of Y there is at most one element r of R such that R
1
(r)=y;

a relation

if there are no distinct elements r and s of R such that R
0
(r)=R

0
(s) and R

1
(r)=R

1
(s).

Intuitively, a multirelation is total when every element of its source is related to some-
thing; it is monodrome if every element of its source is relat ed (once) with at most one
element of its target; it is injective if every element of its target is related (once) to at
most one element of its source; it is surjective if every element of its target is related
to something; and it is a relation if elements are never relat ed twice.

These properties are strictly related: a multirelation is t otal if and only if its transpose
is surjective, and it is monodrome if and only if its transpos e is injective; �nally, it is
a relation if and only if its transpose is.

Note: If you look back carefully, you will notice that the cardinality constraints of a re-
lationship type associated to the source and target entity types are really expressed in
terms of the legs of multirelations: indeed, cardinality constraints have nothing to do with
the entity types; they are a purely set-theoretical feature of the multirelations instantiating
a relationship type. One could equivalently say that a constraint of the form (x :1) forces
the corresponding leg to be an injective function, and that a constraint of the form (1: x)
forces the corresponding leg to be an surjective function; this de�nition is equivalent to
the one above.

All in all, noting that a monodrome total relation is commonl y called a function, we
have the following table assigning standard mathematical t erm to the cardinality con-
straints speci�ed on the source entity types (rows) and on th e target entity types
(columns):

(0:1) (1:1) (0:N) (1:N) (0:M) (1:M)

(0:1) injective
partial
function

injective
and
surjective
partial
function

partial
function

surjective
partial
function

(1:1) injective
function

injective
and
surjective
function

function surjective
function

4

Chapter 1. Overall System Design

(0:N) injective
relation

injective
and
surjective
relation

relation surjective
relation

(1:N) injective
and total
relation

injective
and
surjective
total
relation

total
relation

total
surjective
relation

(0:M) multirelationsurjective
multirela-
tion

(1:M) total mul-
tirelation

total
surjective
multirela-
tion

The empty places represent impossible combinations. Note that if you exchange the
two pairs of indices, you obtain the cardinality constraint s on the transposeof the
multirelation. Thus, if a multirelation has to be an injecti ve relation, its transpose has
to be a partial function, and viceversa.

Weak Entities
A weak entityis an entity that exists only if is related to a set of uniquely determined
entities, which are called the ownersof the weak entity. For instance, we could extend
our library with a weak entity type edition ; each book has several editions, and
certainly it is nonsense to speak about an edition if this doe s not happen in the context
of a speci�c book. From a user interface viewpoint, weak enti ties are usually edited
in the context of (one of) their owners. When an entity is dele ted from a schema
instance, all owned weak entities are deleted, too. We shall call the type of a weak
entity a weak entity type.

For entities of type W to be owned by entities of type X, a requirement must be sat-
is�ed: there must be an identifying function from W to X that speci�es the owner of
each entity of type W, that is, a relationship type going from Wto X whose cardinality
constraint impose its instances to be functions. Deletion of an entity of type X implies
deletion of all related entities of W.

Weakness is recursive. If x owns y and y owns z, then x (indirec tly) owns z. Of course,
it must never happen that an entity is owned by another one by m eans of two distinct
ownership paths; as a special case, it must not happen that an entity owns itself. ERtool
performs a novel static check guaranteeing that this will no t happen.

Subtyping
The last concept we need is that of subtype. When you say that entity type A is a
subtype of B, or, more informally, that “ A is a B”, you are saying that all attributes of B
are also attributes of A, and all relationship types incident to B are also incident on A
(this phenomenon is usually called “subclassing” or “inher itance” in object-oriented
jargon). In our example, subscriber is a subtype of person : indeed, each subscriber
has a name, but has also other information.

5

Chapter 1. Overall System Design

ERW supports subtyping. For each entity type, you can specif y, using the isa ele-
ment, any number of supertypes, whose attributes and incide nt relationship types
will be inherited (this is called multiple inheritancein object-oriented jargon). Obvi-
ously, you cannot form cycles (ERtool will prevent you from doing this).

Semantically, subtyping is modelled by set inclusion. That is, if A is a B then in every
schema instance the set associated toA is a subset of the one associated toB. That is,
every entity of type A is also an entity of type B.

To be completely precise, ERW adopts a restriction on the allowable assignments of
sets to entity types: it is required that every entity has a de �nite type. For instance, if
A and B are both a C, then it is not possible that an entity is in both A, B and C unless
it is also in a common subtype of A and B. This avoids, for instance, that if man and
womanare subtypes of person you can have an entity that is both a man and a woman
(but should you need that, you just have to add a suitable subt ype hermaphrodite
of both manand woman).

Finally, ERW lets you mark an entity type A as abstract. In this case, there can be no
entity whose type is A, but it is possible that there are entities whose type is a subtype
of A. Of course, abstract types without subtypes are completely useless. But, should
you need every person to be either a man or a woman (or possibly a hermaphrodite),
you can declare person as abstract. Mathematically, the set of entities associated to an
abstract entity type must coincide with the union of the sets associated to its proper
subtypes.

Rei�cation
Now that we have a complete abstract account of the semantics of a
entity-relationship schema, it is time to reify it: this process maps our abstract
multirelation-theoretic semantics to actual tables of a re lational database.

ERW handles the rei�cation process for you; in fact, it hasto handle it, as the run-time
environment will have to query and update an actual database , and there are several
strategies to reify an entity-relationship schema. ERW fol lows a standard general-
purpose algorithm that should work reasonably in all circum stances.

Rei�cation of entity types is fairly obvious: each entity ty pe is represented by an SQL
table whose columns correspond to the attributes of the type (there is some other
work to do to support ERW extended types, but we have not to con cern ourselves
with such details in this section), and whose rows represent entities. ERW adds an
integer id primary key column to all tables, so to mimic the set-theoret ic semantics
we just discussed. Additionally, to support user/group bas ed authorisation two ad-
ditional columns id_owner_usr and id_share_grp might be added.

Even if the primary key is handled by ERW, you still have the po ssibility of de�ning
set of columns that should not be duplicated using the key attribute of the attr
element of ERL. The set of columns thus identi�ed is declared UNIQUE. If you do not
declare keys, you get a truly set-theoretical semantics: each entity is a distinguished
object on its own, even if it has exactly the same attribute va lues of another entity
(the same happens for relationships).

Rei�cation of relationship types is more sophisticated: th e obvious way is using a
support tablewhose rows represent relationships (i.e., the elements of the multirela-
tion) and the images of such elements under the two legs. In ou r library example,
ERtool produces a table looking as follows:

CREATE TABLE loan (
id int NOT NULL PRIMARY KEY,
id0_person int NOT NULL,
id1_book int NOT NULL,
startdate date NOT NULL DEFAULT CURRENT_DATE,
enddate date,
duration char(1) NOT NULL

6

Chapter 1. Overall System Design

);

Again, the additional primary key id let us distinguish every relationship (even in
multirelations), whereas id0_person and id1_book are the images of a relationship
through the two legs. The remaining columns are attributes.

If, however, the cardinality constraints imposed force the multirelation instantiating
a relationship type (or its transpose) to be monodrome (or ev en a function), there is
a more ef�cient method: a column named id_ relationship-type _other-entity-type
is added to the table reifying an entity type. In this case, we say that the SQL table
reifying the entity type absorbedthe SQL table reifying the relationship type, or, in-
formally, that the entity type absorbed the relationship ty pe. Thus, for instance, if we
modi�ed our example and set upper="1" in the de�nition of the book leg (i.e., each
book is on loan to at most one person), and moreover we elimina ted all attributes
from the relationship, instead of a support table we would ha ve produced a new col-
umn id_loan_person in the table reifying the entity book . That is, book would have
absorbed loan .

When ERtool rei�es an entity-relationship schema, it �rst tries to abso rb all rela-
tionship types without attributes into their sources (if it is possible); then it checks
whether it would be possible to absorb the remaining relatio nship types without at-
tributes into their targets, and complains if this is true, a s by design absorption is pos-
sible only in the source entity types; �nally, it creates a su pport table for all remaining
types. There is some control on the �rst part of the process, a s you can explicitly ask
for a relationship type not to be absorbed even if it is possib le.

Subtypes are realised by keeping in sync the id �elds of the tables reifying the types
involved. Thus, for instance, if A is a B then for each value of the id �eld in the table
reifying A there is a corresponding row of B whose id �eld has the same value. This
behaviour mimics exactly set-theoretical inclusion.

Note: The rei�cation process is more complicated, as, for instanc e, part of the rei�cation
of a dynamic enumerative attribute consist in creating an ad hoc table for storing the
enumeration. The details of the rei�cation process are give n for each ERL element in
detail in Chapter 2. In any case, ERtool generates detailed documentation about the
rei�cation process.

Concurrency
ERW is able to coordinate any number of users accessing concurrently a database.
The design principle guiding the handling of concurrency is very simple, but effec-
tive: since editing is local, ERW keeps track of all changes made by the user in the
browser. When the user submits its changes, ERW locks all tables involved with the
editing of an entity before starting the update. Then, it che cks whether referential or
logical integrity might be violated by the modi�cations sub mitted by the user; then,
it checks that read-only attribute values match the ones in t he form; then, it perform
custom checks using thepre-update hook (if any of the previous check fails, the trans-
action is aborted). Finally, it applies the required modi�c ations, it performs custom
updates using the post-update hook and unlocks the tables.

Locking is important because it guarantees atomicity. ERW d oes not assume �ne-
grained locking in the underlying database: rather, it lock s all tables that could be
possibly involved with an entity update or deletion. Unfort unately, an unpleasant
side-effect is that in databases with a rich ownership/subt yping structure updating
an entity may require locking a large number of tables. Note, however, that editing
can bealwayscarried out in parallel, because of ERW's stateless editing design. When
changes are written to the database, however, the access will be suitably serialised.

7

Chapter 1. Overall System Design

Notes
1. In the future, custom �les will be replaced by another XML- based language from

which they will be generated.

2. Directedhere means that arcs in the graph go from a node to another node, that
is, they have a speci�ed direction. Usually entity-relatio nship schemata de�ned
without direction, but this is a big mistake, as relations ar e directed, and this can
generate a certain amount of confusion (think of the relatio n “father of”).

3. Traditional entity-relationship schema instances use relations instead of multire-
lations; however, multirelations are very useful in practi se (as the library exam-
ple shows), and they can be handled in a clear, formalised way using suitable
mathematical de�nitions (cfr. “Multirelational Semantic s for Extended Entity-
Relationship Schemata With Applications”, Proc. of ER 2002, Lecture Notes in
Computer Science, Springer-Verlag, 2002).

4. The term “leg” comes from the category-theoretic usage of writing this kind of
objects (calledspans) with the R symbol in a raised position.

8

Chapter 2. ERL: an Entity-Relationship Language

ERL is an XML-based language that describes entity-relationship schemata enriched
with information that is useful in rei�cation and interface construction. It is the foun-
dation over which ERW is built. To understand ERL, you must al so understand how
ERtool will reify ERL-de�ned entity-relationship schemata.

A Quick Tour
Before giving the reference to ERL elements, it is useful to have an informal discus-
sion of what you can describe in ERL.

ERL documents are made of anerl element, that can contain ent elements (describ-
ing entity types) and rel elements (describing relationship types). Additionally, the
enum element can be used to createstatic enumerative types(attributes of this type can
assume a �nite and �xed number of values), and the fset element can be used to
create�leset types(�leset attributes associate to an entity a set of �les with a ttributes).

Inside an ent element there are attr elements, describing attributes, and isa ele-
ments, describing supertypes. The attr element has some XML attributes1 that let
you specify the type of the attribute and whether it is mandat ory (that is, whether
the user must provide some input for that attribute).

Inside a rel element you can �nd, again, attr elements, but you will certainly �nd
two leg elements, which specify the �rst and second leg of a multirel ation (including
the source entity, the target entity and cardinality constr aints).

All elements let you insert optional text inside them; it wil l be added to the docu-
mentation.

Types and Identi�ers
Almost all elements in an ERL document have a mandatory ident i�er. For the erl ,
ent , rel and attr elements, moreover, the identi�er is bound to be restricted: it must
start with an alphabetical character and must be entirely fo rmed by alphanumerical
characters. Case sensitivity cannot be guaranteed, as it depends on the underlying
database, but ERWis case sensitive, so be careful. Note that the identi�ers id , file ,
owner , share and belongs are reserved.

Warning
You can use identi�ers of any length, but they will be combine d dur-
ing the rei�cation process to get the actual name of database columns
representing references to other tables. If you use too long identi�ers,
this construction could yield names that exceed the maximum identi�er
length in your database. Try to use short, meaningful identi�ers.

All attributes have an ERL type. ERL types include the follow ing SQL types:

CHARACTER CHARACTER LARGE OBJECT
CHAR CLOB
CHARACTER VARYING NUMERIC
CHAR VARYING DECIMAL
VARCHAR DEC
NATIONAL CHARACTER INTEGER
NCHAR INT
NATIONAL CHAR SMALLINT
NATIONAL CHARACTER VARYING DATE
NCHAR VARYING TIME

Moreover, there is an additional simulated type, BOOLEAN, which holds a truth

9

Chapter 2. ERL: an Entity-Relationship Language

value2, and TEXT, which is a non-SQL, but largely diffused, variant of CLOB. All
SQL types are faithfully preserved during rei�cation, wher eas BOOLEAN is
mapped to CHAR(1) (the column will hold '0' or '1').

Finally, there are two virtual types: enum and fset. They were added to increase the
expressive power of an entity-relationship schema describ ed in ERL and avoid the
creation of many relationship types with the sole purpose of simulating data types.

The enum type
Often in databases one has to store one out of a �nite set of values. These values may
be �xed forever (e.g., weekdays, male/female, . . .), or coul d vary over time (e.g.,
positions in a company).

To this purpose, ERW provides two solutions by means of the en um type and of
the enum element. The enum element speci�es an SQL type and describes a list of
value/label pairs. Any attribute of type enum pointing by me ans of the enumref
attribute to a certain enum element will have the SQL type of that element; moreover,
the content of the attribute is restricted to the values desc ribed in the enum element
and, for each value, the user will always be presented with th e corresponding label.
In such a case we say that we de�ned a static enumerative attribute.

If, on the other hand, there is no enumref in an attribute with type enum, then a
special table is created that holds the value/label pairs. T he value/label pairs can be
edited by authorised users, and so we speak of adynamic enumerative attribute. Clearly
this kind of enumerative attribute is more �exible, but also less ef�cient.

The fset type
Filesets are a rather sophisticated object (in fact, a weak entity type) camou�aged as
an attribute. An attribute of type fset does not generate an S QL column: instead, it
generates another table that holds information about �les a ssociated to entities. When
editing an entity, the user will be able to upload and downloa d �les, associating them
to the entity much like a weak entity.

As an additional facility, �les in a �leset may have attribut es (for instance language,
or a title). To obtain this result, a �leset type de�ned using the fset element must
be referred using the fsetref attribute. Of course you cannot use the fset type when
de�ning the attributes of a �le set.

Elements
In this section we list all ERL elements, giving in detail the ir usage and meaning.

erl

Name
erl — A whole entity-relationship schema

Synopsis
The erl element is the top-level element of an ERL document. It conta ins the ent ,
rel , enum and fset elements.

10

Chapter 2. ERL: an Entity-Relationship Language

Attributes

id

A restricted identi�er for the whole schema; the de�nition � le carrying global
information about the database structure will be named afte r this attribute.

title

An optional descriptive title for the whole schema.

enumval

Name
enumval — A value/label pair of a static enumerative type

Synopsis
The enumval element describes a value/label pair for a static enumerati ve type. The
user will always see the label, but the database will store th e corresponding value.

Attributes

value

The value to store in the database.

label

The label to present the user with.

enum

Name
enum — A declaration of a static enumerative type

Synopsis
The enumelement contains a list of enumval elements describing the value/label pairs
of a static enumerative type.

Attributes

id

An XML identi�er for this type.

11

Chapter 2. ERL: an Entity-Relationship Language

label

A label for this type, mainly for documentation purposes.

type

An SQL type for this attribute. If not speci�ed, it is assumed to be INT.

size

For the types for which it is meaningful, the size of the attri bute. Seeattr .

scale

For numeric types, the scale, that is, the number of fraction al digits. Seeattr .

fset

Name
fset — A declaration of a �leset type

Synopsis
A �leset type speci�es which attributes each �le of the �lese t will have. The fset
element contains a list of attr elements to this purpose.

Attributes

id

An XML identi�er for this type.

label

A label for this type, mainly for documentation purposes.

Rei�cation
A �leset type declaration does not per segenerate any SQL code. However, it de�nes
the content of the support tables for all attributes of type f set that refer to the type, as
all attributes listed inside the element are rei�ed and adde d to the table.

attr

Name
attr — An attribute of an entity or relationship type

12

Chapter 2. ERL: an Entity-Relationship Language

Synopsis
The attr element describes an attribute of an entity or relationship type.

Attributes

id

A restricted identi�er for this attribute. Note that the ide nti�er is not an XML
identi�er, so you can use the same attribute identi�er for at tributes of different
types.

label

A label for this attribute. The user will be always presented with this label when
dealing with the attribute.

help

A detailed help text for this attribute (for tooltips).

type

An ERL type for this attribute. If not speci�ed, it is assumed to be VARCHAR.

enumref

If the type attribute is set to enum and you want to specify a static enumerative
type, you should specify here the XML identi�er of an enum element.

fsetref

If the type attribute is set to fset and you want the generated �leset to have
attributes, you should specify here the XML identi�er of an fset element.

size

For the types for which it is meaningful, the size of the attri bute. For text types,
it is the maximum number of characters that can be stored, and defaults to 255.
For numeric types, it is the number of meaningful digits.

scale

For numeric types, the scale, that is, the number of fraction al digits (by default,
0). Note that the scale is included in the size, so a numeric type with size n and
scales has n-s digits to the left of the point and s digits to its right.

regex

A JavaScript regular expression de�ning the valid content o f this attribute. This
is meaningful only for text and numbers, and provides a gener ic, �exible way of
checking user inputs. The user will be prevented from settin g the content of this
attribute to a string that does not conform to the regular exp ression. Note that
the empty string is always a valid input for a non-mandatory a ttribute.

Warning
The input provided by the user is valid if it matches some-
where the regular expression; if you want to give a tight con-
straint (i.e., on the whole content), you should start your ex-
pression with ^ and end it with $, as usual. Note that, to avoid
to confuse the user, it is probably a good idea to permit trail-
ing spaces.

13

Chapter 2. ERL: an Entity-Relationship Language

default

A default value for this attribute. The allowed content depe nds on your
database, although by SQL-99 standard you can use a literal, CURRENT_DATE,
CURRENT_TIMEand a few other speci�ers (in PostgreSQL you can use
any variable-free SQL expression). For example, by setting default to
CURRENT_DATEfor a date the user will be presented with the current date as
default value.

Warning
ERW can perform little or no check on the content of this
attribute. Try to use standard SQL constructs for portability,
and check carefully the resulting type. In particular, constant
strings must be quoted (e.g., default="'a string'").

mand

This �eld can be set to true or false (the default). In the �rst case, the user is
required to insert some data for this attribute.

trim

This �eld is meaningful only for ERL text types, and can be set to true
(the default) or false . In the �rst case, this attribute will be trimmed.
More precisely, trimming happens following the ERW type ass ociated (see
the Section calledERL Types vs. ERW Typesin Chapter 4): for type pw, no
trimming; for type t , left and right trimming; for type a, left trimming.

key

This �eld can be set to true or false (the default). The set of �elds for which this
attribute is true constitutes the key setof the entity or �leset. ERW will prevent
you from inserting two elements with the same key set. Note th at for weak entity
types the leg of the identifying functions are part of the key (seerel).

hidden

This �eld can be set to true or false (the default). In the �rst case, the user is
never presented with the attribute, but the attribute is ret rieved and rewritten
without change on updates. This allows to create �elds to sto re additional infor-
mation not edited through ERW (but maybe computed each time t he element is
updated).

Rei�cation
An attribute that is not of type enum or fset is rei�ed by an SQL column in the obvi-
ous way. Enumerative types of identi�er attribute-name generate a column named
attribute-name in the case of a static enumerative attribute (and the type of the col-
umn will be given by the static enumerative type), whereas th ey will generate a col-
umn named id_ attribute-name of SQL type INT in the case of a dynamic enumera-
tive attribute. This column points to a table named entity-type _attribute-name that
contains the actual elements of the type. The table can be edited much like an entity
table.

As we mentioned previously, attributes of type fset do not ge nerate an SQL column,
but rather a support table (again, named entity-type _attribute-name) containing the
attributes of the �leset, if a �le set type is present, and two additional columns: file ,

14

Chapter 2. ERL: an Entity-Relationship Language

holding the actual name of a �le in the �le system, and id_belongs_ entity-type .
Each �le stored in the �leset points to the entity it belongs t o using the latter column.

isa

Name
isa — A reference to a supertype.

Synopsis
An entity type can inherit attributes and relationship type s from any number of su-
pertypes. The isa element speci�es a supertype of an entity type.

Attributes

entref

The identi�er of the entity this element points to.

Rei�cation
When you specify that A is a B ERW keeps in sync the tables reifying the two types
(i.e., for each entity in A there is a corresponding entity with the same id in B). When-
ever you edit an entity of type A, independently of whether you are editing it in the
context of A or B, ERW knows that it is of type A and acts accordingly.

ent

Name
ent — An entity of an entity-relationship schema

Synopsis
An entity type models a concept by means of attributes. The ent element describes
an entity type of an entity-relationship schema. It can cont ain text that describe infor-
mally its use or meaning, and any number of isa and attr elements.

Attributes

id

A restricted identi�er for this entity type.

15

Chapter 2. ERL: an Entity-Relationship Language

label

A label for this entity type. The user will be always presente d with this label
when dealing with entities of this type.

abstract

This �eld can be set to true or false (the default). In the �rst case, the entity
type is declared to be abstract (seethe Section calledSubtypingin Chapter 1).

owner

This �eld can be set to true or false (the default). In the �rst case, for ev-
ery entity of this type there is a user who holds all privilege s about the ele-
ment (i.e., you have element-based authorisation); moreover, each element can
be assign to a group, and then all users belonging to the group hold all privi-
leges about the element (the amount of privileges, however, can be controlled;
seethe Section calledThe Authorisation Systemin Chapter 5). There are some re-
strictions on the entity types for which this attribute can b e set to true —see
the Section calledRestrictions on Element-Based Authorisationin Chapter 5.

Rei�cation
An entity type is always rei�ed by an SQL table named as the XML attribute id
and having as columns the rei�cation of its attributes. Note however that because of
virtual types the rei�cation of an entity type may in fact cre ate several SQL tables,
namely those for dynamic enumerative attributes and those f or �lesets. Additional
columns may also appear in the rei�cation of an entity type if relationship types have
been absorbed into it.

Note that when you require element-based authorisation you are also
requiring it for all subtypes. For this reason, to avoid inco nsistencies
only certain entity types can have element-based authorisation. See
the Section calledRestrictions on Element-Based Authorisationin Chapter 5.

leg

Name
leg — A leg of a relationship type in an entity-relationship sche ma

Synopsis
The leg element describes one of the legs of a relationship type.1

Description
A leg is given by its codomain (an entity type) and informatio n on the cardinality
and editing constraints.

16

Chapter 2. ERL: an Entity-Relationship Language

Attributes

entref

The identi�er of the entity type this leg points to.

label

A label for this leg. The user will be always presented with th is label when deal-
ing with the relationship type this leg appears in from the pointed entity type.

help

A detailed help text for this leg (for tooltips).

lower

The lower bound for this leg. It may be 0 (the default) or 1.

upper

The upper bound for this leg. It may be 1, N or M(the default).

key

This �eld can be set to true or false (the default). In the �rst case, the entity
type referenced by this leg becomes weak, and the entity type referenced by the
other leg becomes one of its owners. The cardinality constraint on this leg must
be (1:1) , and the one on the other leg (x :N) .

editable

This �eld can be set to true (the default) or false . In the �rst case, the rela-
tionship type containing this leg will be editable from the e ntities of the pointed
type.

Rei�cation
Seerel.

Notes
1. Technically we de�ned legs on multirelations, which are t he semantics of rela-

tionship types, but the reader will forgive us if we extend th e term.

rel

Name
rel — A relationship type in an entity-relationship schema

Synopsis
A relationship models a connection of some kind between enti ties. The rel element
describes a relationship type. It must contain two leg elements and any number of
attr elements. The �rst leg is taken to be the source of the relatio nship type, and the
second leg its target.

17

Chapter 2. ERL: an Entity-Relationship Language

Attributes

id

A restricted identi�er for this relationship type.

label

A label for this relationship type. The user will be always pr esented this label
when dealing with the relationship type abstractly (i.e., w ithout starting from an
entity type).

absorbable

This �eld can be set to true (the default) or false . In the second case,ERtool
will always generate a support table to reify the type.

Rei�cation
The rei�cation techniques used by ERtool have been described in
the Section calledRei�cation in Chapter 1. Here we dwell into the details of �eld
naming and so on.

First of all, not all cardinality constraints are supported by ERW: if on both legs the
upper bound is 1, then at least one leg must have a lower bound 0. Bijections, which
are discarded by this restriction, are useless (as they make it impossible to modify
locally the database).

A nonabsorbed relation with source and target entities A and B, respectively, gets two
additional columns id0_ A and id1_ B, that are used to point at the elements of the two
entities by means of the id column; in other words, they give the values of the two
legs on the elements represented by a SQL row. Note the index after id it is necessary,
as ERW support loops (relationships from an entity to itself).

On the contrary, a relationship R from entity A to entity B giving rise to a partial func-
tion is rei�ed as an additional column named id_ R_B of SQL type int in A. Injective
relations (whose transpose would be absorbable) give rise to an error. You just have
to exchange the rÃ´le of the two leg speci�ers.

Notes
1. Unfortunately, the word “attributes” has different mean ings in the XML and

entity-relationship world.

2. This is actually an SQL-99 type, but it is not supported by m any DBMS

1. Technically we de�ned legs on multirelations, which are t he semantics of rela-
tionship types, but the reader will forgive us if we extend th e term.

18

Chapter 3. The User Interface

This chapter describes the basic mechanisms and features ofthe web user interface
generated by ERW. It is not an end-user manual.

As we mentioned before, ERW lets you edit instances of an enti ty-relationship
schema. That is, it lets you create and delete entities and relationships, and change
their attributes.

Each entity has an associated form, from which the user can modify its attributes and
incident relationships. To access the form, the user must select the entity from the
main list: it is a list of all existing entities. This list can be �ltere d in several ways, and
is generated by the script list.php .

Once the user selects an entity for editing, a new window is op ened that contains
HTML input controls for attributes (text inputs, text areas , radio buttons etc.) and a
number of complex structures for editing relationships. Th e content of the window
is generated by the script form.php .

The rationale behind the editing of relationships is that yo u have a white-background
list, containing the current relationships; and, immediat ely below, a grey-background
list of entities that could be used to create new ones. Suitable buttons allow the user
to perform relationship editing. For convenience, buttons that allow to create new
entities or modifying existing ones are also allowed, but th ey can beinhibited .

Editing relationship attributes is also fairly easy: there is a set of input controls un-
der the list of relationships. All new relationships get the attributes currently dis-
played. Moreover, whenever the user clicks on an existing re lationship, its attributes
are loaded into the controls (in this way it is easy to copy the attributes of an existing
relationship). If the user wants to modify the attributes of an existing relationship,
he or she has just to click on the relationship, modify the con trols and click on the
“Apply” button, which will apply the current values.

You can help the user to understand what's going on my making g ood use of the
help attribute for attr and leg elements.

By default, ERW displays �rst all attributes, then �lesets, and then relationships. At-
tributes are listed in the same order as in the ERL �le; they ar e pre�xed with their
label, and the label is embedded in a STRONGHTML element if the attribute is manda-
tory. Of course, this can be changed using custom forms.

If an attribute cannot be modi�ed, because it is read only, it is displayed in a differ-
ent manner: HTML input control get their READONLYattribute set, whereas lists just
display the available elements (e.g., relationships) on a grey background.

Warning
Often browsers do not support the READONLYattribute on sophisticated
controls, such as drop-down lists. Of course, ERW will just discard any
changes, but the user may not be aware of this fact.

Finally, the user can select among four buttons (any of which can be inhibited) to
�nish editing. “OK”, as expected, save changes and closes th e form. “Save” com-
mits changes, but leaves the form open for further editing. “ Save & Clone” commits
changes, and creates a clone of the current entity that can befurther edited and saved
(this is most useful when doing repetitive data entry). Fina lly, “Cancel” will forget all
changes.

You can tweak the default.php script, which generates the CSS style sheet, to
change some details. In particular, DIV elements of classlistborder surround lists:
by choosing, for instance, the value scroll instead of hidden for the overflow CSS
attribute you can display lists with scroll bars that let the user scroll to see long
labels. Moreover, the editable attribute of the leg element allows you to select
from which side the user can edit relationships.

19

Chapter 3. The User Interface

Stateless Editing
The main ingredient in the design of ERW's web interface is stateless editing. HTTP
is a stateless protocol, and, as such, is not prone to support stateful interaction with
a server (this is usually achieved with a mix of cookies and se rver sessions imposed
over the protocol). ERW is designed to let the user edit freel y a database recording
no information server-side. All state related to the modi�cat ion made by the user is
stored client-side, so that the connection to the database is truly stateless.

This approach has a number of advantages: in particular, it a dheres to the principle
of least surprise: web users are by now accustomed to the idea that closing abruptly
a web page (or even killing the browser), even in the middle of a multi-page form
submission, will result in no changes being recorded server -side.

Indeed, any web form is an example of stateless editing: inpu t controls store client-
side the current choice of the user. The situation, however, is completely different
when we take into consideration relationship editing.

The user, before submitting any information to the server, s hould be able to add rela-
tionships, delete old or new ones, and edit their attributes , without storing state on the
server. This requires a completely different approach, as the state of input controls is
not suf�cient to store this information.

ERW uses JavaScript scripting and the W3C DOM to alter the appearance of the form,
showing how relationships are added or deleted, and how thei r attributes are mod-
i�ed. All these data are stored in the JavaScript state of the browser. Suitable JavaScript
code interacts with the database presenting the user with a m odi�ed view, which
however does not really exist server-side. When the user has �nished with editing,
and submits the form, the entire JavaScript state of the form is suitably serialised
and sent to the server. The PHP run-time environment on the se rver locks the part
of the database that is affected by the changes, checks that no integrity constraints
are violated, and performs the changes. If anything goes wro ng, the user is presented
again with the form that was submitted: using the serialised client state, the server is
indeed able to completely rebuild the JavaScript state of th e submitted form.

Simulating Remote Procedure Calls
JavaScript provides no direct way to connect to a database. Usually, whenever the
user has to choose among a set of elements the entire set is packed in a suitable
HTML input element (e.g., SELECT) and sent to the browser.

This approach, however, makes it impossible to edit large da tabases. ERW aims at
the greatest generality, and thus implements on top of HTTP a simulated remote
procedure call (RPC) mechanism using a hidden frame (this te chnique is often called
remote scripting).

Every form contains an invisible IFRAME element that is used to interact with the
server. Whenever the user interface code needs some data from the database (for
instance, because the user is browsing a set of entities) thelocation of the IFRAMEele-
ment is set to a particular URL that will load into the IFRAMEelement some JavaScript
code; in turn, this code manipulates via the DOM the user inte rface, shows these data
to the user, and updates the JavaScript state. The effect is much like an RPC.

State Discrepancies
Statelessness has a relevant consequence, which users can �nd disorienting at �rst:
the state of the browser is not necessarily synchronised wit h the content of the
database. For instance, if someone else adds an entity, it will not show up in your
main or selection lists, at least until you re-�lter their co ntent, or move around with
arrows.

20

Chapter 3. The User Interface

Correspondingly, it is possible that you deleted, say, a rel ationship, without breaking
any cardinality constraint: however, since in the mean time another user has deleted
other relationships, your operation becomes illegal. In th is case ERW will warn you,
and show you again the form you were editing (this time, with u pdated information
about the database content).

Caching
A page with a rich set of features (text areas, �lesets, etc.) can �re, in principle, several
dozens of parallel HTTP connections, as not only the main pag e, but also all relevant
IFRAMEs must be �lled. Each script in turn includes JavaScript code , style sheets and
so on.

To lessen the burden on the HTTP server, ERW tries to make cacheable for six hours
all URLs that do not contain database-dependent data. This i nclude most of the
JavaScript and CSS material. In this way, the load is essentially reduced to one URL
per IFRAME.

A possibly pernicious effect is that when you make an upgrade there could be a mix
of old and new code all running in the same browser. Moreover, to make things work
you must be sure that clocks are set properly.

This kind of problems are however easily solved by forcing th e reload of the page
involved, or, for example, by upgrading during an enough lon g period of system
inactivity.

21

Chapter 3. The User Interface

22

Chapter 4. Customisation

A serious problem faced by automatic software generation fo r content management
is the existence of two contradictory goals: the applicatio n should be generated in a
completely automatic way, to minimise efforts, but at the sa me time should be highly
customisable, to satisfy the needs of the users.

Often the solution is adding custom code to an automatically generated skeleton: the
custom code can then take care of the details of the implementation that would be
dif�cult or impossible to express. However, even if this app roach is extremely �ex-
ible (as essentially anything can be implemented on top of th e skeleton, if suf�cient
documentation is available) it is also very dangerous. Usua lly, procedurally speci-
�ed customisations end up being strongly tied to a speci�cat ion: at that point, deep
modi�cations to the speci�cation lead to unpredictable beh aviour.

ERW adopt a design pattern that we term speci�cation percolation: the generation of
the user interface is akin a �uid, percolating from the ERL sp eci�cation to the user
interface through a series of additional speci�cations, wh ich act similarly to active
membranes: they may �lter some information, and even replac e it with something
else, but it should (almost) never happen that information i s lost in the process or an
inconsistent con�guration is generated.

More down-to-earth, customisation of ERW is a process by whi ch you can alter cer-
tain standard choices made by ERtool when producing the de�nition �les, create
custom forms, and add external code to the ERW standard database processing code
so to perform special actions.

ERL spec Docs

Layouts

SQL

I18n

Forms

UI

Custom files

Figure 4-1. Speci�cation percolation.

In Figure 4-1 we represent schematically the way information percolates through
ERW's additional speci�cations.

The �rst membrane on the route of this information to the user interface is locali-
sation: using the standard GNU gettext package, labels for attributes and enumer-
ative type values are translated in a suitable language (usually negotiated with the
browser). Localisation is discussed in Chapter 11.

23

Chapter 4. Customisation

Then, the administrator may set up custom �leswhich alter (in a controlled way) the
information represented in the de�nition �les. This modi�c ations may range from
�ltering options (specifying which �elds are important to � nd quickly entities and
relationship of a given type), labelling (printf -like formatting strings that use the
attributes of the schema), and alternate user interfaces.

This information allows to tune several parts of the applica tion, but it is not necessary
to specify any part of it: for instance, �ltering is performe d by default on the �rst
mandatory attribute, and labelling is handled analogously .

Then, the user may specify custom forms. These are completely rede�ned forms,
which are described in ERF, an XHTML-like language that cont ains the basic ele-
ments, plus suitable elements to position the input control s for attributes and rela-
tions. Of course, forms must satisfy some constraints (for i nstance, they must contain
all mandatory attributes), but this is checked automatical ly.

Again, specifying a custom form is not necessary: ERW is able to generate
autonomously a default form, using customised �ltering opt ions, alternate user
interface and so on. Of course, these may be all re-speci�ed at the custom form level,
but this is not necessary: a custom form may decide, for instance, to modify just the
orderin which attribute are presented, but not the speci�c interf ace that was chosen
for each of them.

The advantage of a careful design based on speci�cation percolation is that the ap-
plication is highly customisable, but at the same time every change to one of the speci-
�cations is immediately re�ected in the user interface, as it percolates freely through the
following ones.

To clarify the usefulness of this approach, we state a few examples:

• In a complex database, with a high degree of customisation and localisation, the
administrator has to add quickly a new entity type. This is as simple as adding the
new type to the ERL speci�cation: there is no immediate need t o add all customi-
sation layers to the new type, as it is guaranteed that the inf ormation contained
in the ERL �le will percolate down to the user interface, prod ucing a reasonable
form in the default language. Layers of customisation can be added later, without
disturbing the rest of the application.

• After de�ning a large number of custom forms, we realise that a certain entity type
will contain always a small number of entities. Thus, we wish that all many-to-
one relations pointing at that entity type are displayed as SELECTelements (i.e., a
drop-down list), instead of using the standard display (whi ch is much larger). In
this case, we just have to set up our choice during the customi sation phase, so that
it will percolate correctly to the forms (even if they are cus tomised).

• We decide that we need an additional attribute in an existing entity type. Of course,
the new attribute will immediately show up in the default for m. However, if there
are custom forms for that entity type, they are likely not to c ontain the new at-
tribute. ERW detects this situation and adds automatically the attribute as hid-
den—it will be silently preserved when editing the database, an d �lled with its
default value. The administrator will be warned that it is th e case to modify the
custom forms accordingly, but again consistency will be mai ntained.

User Interface Customisation
The user interface provided by ERW can be customised in several ways, but the most
important point is that the same data can be presented in different ways. By default ERtool
will use an interface that will work in every case; however, i t could not be the best
interface for a particular case. For instance, if a relationship is absorbed, ERW present
it as a complex set of user inputs where the user can �lter and c hoose which element
to associate to the current one. However, if the choice is among a very small number
of elements, a drop-down list could be a better choice.

24

Chapter 4. Customisation

In this section we will �rst review some general idea about cu stomisation: then, we
will see how to write custom �les, and �nally custom forms.

ERL Types vs. ERW Types
When you create an ERL �le, you specify an ERL type for each att ribute. This type
is automatically mapped by ERtool on an ERW type, which speci�es the user inter-
face for that attribute. Moreover, an ERW type is assigned to each relationship type
incident to an entity type.

In the following table you can �nd the correspondence betwee n ERL types, relation-
ships and ERW types; the types that ERtool assigns by default are marked with an
asterisk:

CHARACTER CHAR CHARACTER
VARYING CHAR VARYING VARCHAR
NATIONAL CHARACTER NCHAR
NATIONAL CHAR NATIONAL
CHARACTER VARYING NCHAR
VARYING

t* a fa ha pw

CHARACTER LARGE OBJECT CLOB
TEXT

a* fa ha t pw

TEXT a*

INTEGER INT SMALLINT i* p

NUMERIC DECIMAL DEC n* ns

ENUM (dynamic) e

ENUM (static) s* r

BOOLEAN b

DATE d* jd

TIME h

FSET f

absorbed relationship types r1* r1s

transpose of absorbed relationship types r1t*

transpose of identi�cation functions (for
weak entities)

r1w * r1e

non-absorbed relationship types rN

t

The most common type, a string of text. The user is prevented f rom inserting
more characters than the SQL �eld can store.

pw

As above, but the input �eld is obscured (the user just sees as terisks while typ-
ing). Useful for passwords.

a fa ha

A fairly large amount of text (currently limited to 64KiB) di splayed in an HTML
TEXTAREAelement. The user has the possibility to upload a �le into the text area.
If you choose the ha type, then on browsers supporting HTMLArea you will get a

25

Chapter 4. Customisation

WYSYWYG HTML editor (of course, HTMLArea must be properly con�gured).
Analogously for fa and FCKeditor .

i p

The second most common type, an integer. There is no check on the actual di-
mension of the number inserted by the user, as it could depend on the DBMS.
The type p forces its content to be (strictly!) positive.

n ns

The exact numeric types. These types require a size and a scale in their decla-
ration, so ERW can check that the user is not inserting more di gits than allows.
The type ns presents the same data in separated and localisedform, that is, the
user can use alocalised comma and a localised point , and, moreover, the num-
bers inserted will be automatically thousand-separated (i f they are not already)
as the user leaves the input �eld.

e

A dynamic enumerative type. The user is presented with a drop -down list.

s r

A static enumerative type. The user is presented with a drop- down list with type
s, and with a radio button set with type r. Note that it is not a g ood idea to set
type r for a non-mandatory attribute, as the user has usually no way to deselect
all buttons.

b

The boolean type. The user is presented with a checkbox.

d jd

The date type. The user is presented with three text inputs fo r day, month and
year. If you choose the jd type, then an additional button ope ning a pop-up
JSCalendarwill be added (of course, JSCalendar must be properly con�gured).
Note that if you choose jd and JSCalendar is not present the button will not ap-
pear, but no errors or warnings will be generated.

h

The hour/minutes type. The user is presented with two text in puts for hour and
minutes.

f

The �leset type. The user with a set of input elements that all ow one to upload
�les to the server, possibly setting or editing their attrib utes.

r1 r1s

The type of an absorbed relationship type. By default the use r is presented with a
set of input elements that allow one to select an entity to for m a relationship. The
type r1s, instead, simply creates a drop-down list containi ng all entities among
which to choose, but clearly this is not a good idea if the enti ties are many.

r1t

The type of the transpose of an absorbed relationship type. By default the user is
presented with a set of input elements that allow one to selec t an entity to form
one or more relationships.

26

Chapter 4. Customisation

r1w r1e

The type of the transpose of identi�cation functions. The ty pes r1w and r1e are
thought for weak entities, and they lets you create new entit ies that will be auto-
matically owned by the current entity.

There is however an important difference: for the r1e type, t he editing is embed-
ded: the attributes of the other entity are embedded into the for m of the main
entity, and the user can modify and edit them much in the same w ay a relation-
ship with attributes can be edited. Embedded entities will b e created or deleted
following the user editing. This approach has a major limit: you can only edit
attributes of the embedded entity, and not relationships. T hus, in particular, no
total relationship can go out of the embedded entity.

On the contrary, using the r1w type one gets a new form to �ll fo r a new weak
entity. The form can modify, of course, its relationships. H owever, the new ele-
ment is actually created and associated to the owner. Note that because of this
difference, it is not possible to associate a new weak entity to a new entity (i.e.,
to an entity that has not been written to the database). The user will be requested
to save the current changes to the database to continue.

rN

The type of a non-absorbed relationship type. The user is presented with a set of
input elements that allow one to create a relationship and mo dify its attributes.

A particular case, to handle with care, is that of loops. A relationship type can have the
same source and target (e.g., “father of”), and in this case for absorbed relationship
types you must choose onedirection for editing; non-absorbed relationship types ca n
only be edited forward.

There is, however, a special important case: when you de�ne a relationship type be-
tween entity types with a common subtype, it is treated as a lo op (as indeed you
can associate entities of the common subtype to entities of the same type). In this
case, non-absorbed relationships can be edited only from the type that is highest in the
type hierarchy(where highestmeans appearing later in a breadth-�rst visit of the hi-
erarchy). This has a side effect: if the relation is total in t he opposite direction, you
will most probably get errors. This con�guration however is purely theoretical and
indeed it is so contrived that it should never happen in real s chemata.

Attribute Speci�ers
Customisation requires specifying attributes, possibly o f related types (e.g., for �l-
tering, displaying, ordering, etc.). An attribute speci�erlets you access dynamically
attributes and relationships of supertypes, subtypes and r elated entities when �l-
tering, labelling or ordering. However, you must understan d completely the pitfalls
involved, in particular the cases when an attribute speci�e r may have a NULLvalue.

The general form of an attribute speci�er is

[leg-codomain .]{ relationship-type ->}[qualifier .] attribute

The formal description above is quite unfathomable. Howeve r, it embodies a
simple idea: you start from the current type and move along re lationship types,
reaching the type containing the attribute you are interest ed it. At the end, you
may need to jump to a supertype or a subtype to get the attribut e you need: this is
the rÃ´le of qualifier (note that jumping to a supertype guarantees the existence
of the attribute, but jumping to a subtype could lead to a non- existing attribute,
which would be valued NULL). Moreover, if you start from a relationship type,
you may want to move to its source or target entity type: this i s the rÃ´le of
leg-codomain , which must be of the form entity-type _leg-index (for an example,
seethe Section calledDisplaying Relationships).

27

Chapter 4. Customisation

Thus, for instance, you can access the name of a subscriber with person.name (here
person is a qualifier), or the name of the book a loan refers to with book_1.title
(here book_1 is a leg-codomain). Of course, specifying a leg-codomain when the start-
ing type is not a relationship type will give rise to an error. There is also an attribute
id that exists in every type and it is guaranteed to provide a pos itive distinct number
for every element of a given type.

Following Identi�cation Functions

More interestingly, we can access attributes of related entities (e.g., owner entities)
using the

relationship-type -> attribute

notation (the relationship type must be named as an ERW attri bute, e.g, loan_book).
You can chain more than one relationship type: of course, the target of a relationship
type in the chain must be a subtypeof the source of the following one. Note again that
you may need to add a quali�er at the end of such a chain if the at tribute your are
interested in belongs to a supertype of the target of the last relationship type of the
chain.

Let us build an arti�cial, but complete example using supert ypes and
identi�cation functions (to see an interesting example wit h subtypes, see
the Section calledCustomising Labels). Suppose that every person is actually owned
by a superhuman , which is in turned owned by a god , which in turn is a subtype of
nonhuman. Every nonhuman has a name. If we want to know the name of the god
indirectly owning a person referred in a certain loan, we sha ll use

person_0.ownedby_superhuman->refersto_god->nonhuman .name

where we assumed that the identi�cation function from person to superhuman is
named ownedby , and that the identi�cation function from superhuman to god is called
refersto .

Following Arbitrary Relationship Types

ERW does not pose any limitation on the kind of relationship t ype that you can in-
sert in an attribute speci�er. This means, however, that usi ng non-monodrome rela-
tionship types will lead to a situation where there are many v alues for the speci�ed
attribute, and that it may happen that a pointer along the pat h is NULL, in which case
the resulting value will be the empty string.

For instance,

loan_person->lname

speci�es the last names of all people who borrowed a certain b ook. Thus, the associ-
ated value is a list of strings, and not just a string. The meaning associated to such a
speci�er depends on the context (�ltering, labelling, etc.) and will be fully explained
later.

Custom Files
The �rst customisation layer is de�ned by means of customisa tion �les. By default,
they are contained in a directory named custom located where the run-time envi-
ronment PHP scripts are. You can create a customisation �le f or each entity type,
relationship type and instance of �leset type you would like to customise. The �le

28

Chapter 4. Customisation

must be named as the identi�er of the type post�xed with .php . A instance of �leset
raising from an attribute A of an entity type T has identi�er T_A, and then the same
rule applies.

There is also a default customisation �lethat is used to change defaults throughout
all types. It is named as the identi�er of the root element of y our ERL �le post�xed
with .php (in our library example, it would be named library.php). Each section on
customisation speci�es how to change the defaults using thi s �le, whenever possible.

Your custom �les are executed in the same environment of a hook: thus, you can
tweak customisation using information such as the name of th e user. Customisation
�les, however, should be light, as they are loaded each time a type is used.

All customisation in custom �les is performed by setting cer tain keys of the array
$D: the �rst key is always the name of the type that is being custo mised (e.g.,
$D["person"]). The custom �les are loaded from higher to lower types, and t his
allows you to customise higher types from the custom �le of a lower type. This is most
useful: for instance, you could decide to customise an attri bute of person in
a different way when it appears in the form of a subscriber . To do so, you
just need to put in the custom �le for subscriber a suitable entry starting with
$D["person"] .

Caution
Your custom �les are executed as PHP scripts, but they must em it no
output. In particular, always check that there are no blank lines after
the processing-instruction delimiter ?>.

The Type Array
The de�nition �le of an entity type, relation type or �leset w ith attributes contains
an associative array that speci�es the type of each editable element, whether it is an
attribute or a relation. A relationship type R from entity type A to entity type B is
named R_B in the de�nition �le for A, and R_A in the de�nition �le for B.

The type array is named $D[type]["type"] (all information from de�nition �les is
stored in a associative tree contained in the $D variable). By assigning a certain ERW
type to a variable, you can change the way it is edited. For ins tance,

$D["loan"]["type"]["duration"] = r;

will tell ERW that, in our library example, the duration shou ld be chosen via a check-
box rather than via a drop-down list.

Note: You can avoid quotes around r ; it is prede�ned as a constant by ERW, so the lack
of quotes will not generate any warning.

Customising Labels
Each time ERW has to display an entity, it uses a labelfor that entity. The label auto-
matically set up is simply the content of the �rst attribute s peci�ed for the entity type,
but it can be customised. The same holds for labels of relationships with attributes.

The array controlling the label of an element is $D[type]["display"] . More
precisely, $D[type]["display"]["fmtString"] must be a printf() -like format
string (it must be interpreted by PHP), whereas $D[type]["display"]["field"]
must be an array of attribute speci�ers and constant strings , whose values will
be used together with the format string. Of course, the numbe r of elements of

29

Chapter 4. Customisation

$D[type]["display"]["field"] must match the number of format speci�ers in the
format string.

Certain data, such as enumerative type or thousand-separated digits, are automati-
cally formatted in the same way they would be presented to use rs in forms. In this
cases, you should always use a%sdirective in the format string. The %ddirective can
be used only with nonformatted numeric types.

Note: ERW is usually able to distinguish whether a string is a constant or an SQL speci�er.
In case it gets confused, just start your constant string with ' : the quote will not be printed,
but ERW will know that you meant literally what follows.

Format String Extensions

The format string supports two useful extensions, which hav e been thought to handle
the case ofNULLvalues and multiple-value attribute speci�ers.

If a directive has a ? just after %, then the directive is optional. If the associated pa-
rameter is empty or NULL then the directive, the preceding one and the following one
are marked as dead, and will not be actually printed (note tha t an optional directive
cannot be marked as dead). This allows you to build complex sp eci�cations that add
markup (such as brackets, hyphens and so on) depending on the presence of a certain
parameter.

As an example,

$D["book"]["display"]["fmtString"] = "%s: %s %s%?s%s";
$D["book"]["display"]["field"] =

array("title", "author", " (", "isbn", ")");

would display a book by showing the author followed by a colon , the title and then
the ISBN code between parentheses, butonly if the code has been speci�ed.

Warning
There are situation (such as editing weak entities with ERW type r1e)
in which ERW has no way to know the attributes of other entities. In
this case, they are all set to NULL. Your format strings must always be
written so that they handles these cases gracefully.

The other useful extension allows to format lists (of format ted values) using a given
separator and additional formatting. More precisely, ERW a ccepts directives of this
form:

%alignment -width- precision - length [separator] standard-format-specifier

When printing a directive of this form, ERW expects as corres ponding �eld a
multiple-value attribute. Each element of the list of value s will be formatted using
the standard-format-specifier . Then, the resulting strings will be concatenated
using the given separator (which can also be delimited by (, < or {), and �nally the
resulting string will be printed using the given alignment, width, ecc.: essentially,
the string will be formatted with a directive obtained by str ipping the separator and
whatever follows, and appending s .

As an example,

$D["book"]["display"]["fmtString"] = "%s: %s %[,]s";
$D["book"]["display"]["field"] =

array("title", "author", "loan_person->lname");

30

Chapter 4. Customisation

would display a book by appending to the title and author the l ist, separated by
commas, of the people that borrowed the book (note however th at in this case you
could get doubles if the same person borrowed many times the s ame book).

Tabular Displays

Sometimes, you could prefer a rigidly aligned, tabular disp lay in which each �eld oc-
cupies a �xed amount of space. This is easy to obtain using printf() 's sophisticated
�eld width and alignment control. However, you will also nee d a �xed-width font,
and a table header specifying the name of the columns. To obtain this effect, you can
set the variable $D[type]["display"]["head"] to any string.

Virtual Attributes

When building labels, sometimes you can use virtual attributes, which do not really
exist in the database, but are generated at run-time. These are the currently imple-
mented virtual types:

MIMEtype

Only for �lesets; contains the MIME type of the �le (it is deri ved from the �le-
name extension).

original

Only for �lesets; contains the original �lename if you are us ing
original �lenames .

�leSizeB
�leSizeKB
�leSizeMB
�leSizeKiB
�leSizeMiB

Only for �lesets; contains the size of the �le in the given uni t (note that K means
1000, Ki means 1024 and so on). It is a �oat, so you can format it using the stan-
dard printf() conventions.

Displaying Owners and Groups

ERW sets up two virtual relationship types, owner_usr and share_grp , that can be
used as any other relationship type in an attribute speci�er to display information
related to an entity belonging to a type that has element-bas ed authorisation.

Displaying Relationships

Display customisation allows you to specify a label using th e attribute values of a
relationship. The resulting label will be juxtaposed on the rightto the label of the related
entity when displaying a relationship in an entity form. For instance, in Figure 2 loans
are displayed showing the label of the borrowed book (the rel ated entity) followed
by a label derived from the relationship attribute values (t ype of loan and dates).
Thus, your labels for relationships must be written with thi s arrangement in mind
(for instance, they would better start with a space).

However, ERW allows you also to edit directly relationships. In this case, you may
want to specify a more complex label, possibly depending als o on the attribute values
of the entities related by the relationship.

31

Chapter 4. Customisation

To this purpose, ERW provides the $D[type]["fullDisplay"] customisation vari-
able. A good example for loan is the following one, which would give the output
shown in Figure 6:

$D["loan"]["fullDisplay"]["fmtString"] =
"%-10.10s %-10.10s %-36.36s %10.10s %10.10s";

$D["loan"]["fullDisplay"]["head"] =
"First name Last name Book title Start date End date";

$D["loan"]["fullDisplay"]["field"] =
array("person_0.fname", "person_0.lname",

"book_1.title",
"startdate", "enddate"

);

Accessing subtypes

The qualifier part of an attribute speci�er may be also used to access attri butes of a
subtype. Of course, the attribute could not exist at all, bec ause the entity speci�ed is
not of that type: in this case, the value will be NULL.

Interestingly, we can use this fact to build labels that are c onditional on the type of an
entity. For instance, if we have an entity document with attribute title and subtypes
publication (with mandatory attribute journal) and techrep (with mandatory at-
tribute number), we can specify a label like:

$D["document"]["display"]["fmtString"] = "%s %s%?s%s%s %?d%s";
$D["document"]["display"]["field"] =

array("title", "(", "publication.journal", ")",
"(", "techrep.number", ")");

As a result, each document has an optional item between parentheses if it is a publi-
cation or a technical report: the journal or the number, resp ectively.

We can push further this technique exploiting the ubiquitou s id attribute. Since sub-
typing is realised by set inclusion, an entity with a certain id is really of a more
speci�c type only if the same id exists in a subtype. This can be exploited as follows:

$D["document"]["display"]["fmtString"] = "%s %s%?.0s%s %s%?.0s%s";
$D["document"]["display"]["field"] =

array("title", "(", "publication.id", "Publication)",
"(", "techrep.id", "Technical Report)");

The id �eld is used to trigger the %?.0s speci�er, but because of the limitation on
the output (.0), the id is not really printed. Rather, the strings (Publication)
and (Technical Report) are only printed if the document is a publication or a
techrep , respectively.

Local Customisation

It can happen that the standard way to label an entity does not work in all situations.
The typical example is given by weak entities: suppose again you have editions for
books, and that editions are weak entities whose owner is the respective book. Cer-
tainly, to label in general an edition you will use also �elds from the owner, for ex-
ample title and author, by means of attribute speci�ers.

However, you will more likely access editions in the context of a speci�c book, us-
ing a suitable ERW type. In this case, however, you need just to show information
about the edition, and not information about the owner, whic h is already currently
displayed.

32

Chapter 4. Customisation

For this kind of situation, ERW offers local customisation. For each relationship type,
you can specify a label for the related entities, which will o verride the standard one.
The label is speci�ed using the usual keys fmtString and field , but preceded by
the key chain $D[type]["display"][" relationship-type _other-entity-type "] . For
instance,

$D["book"]["display"]["regards_edition"]["fmtString "] = "%s, %d";
$D["book"]["display"]["regards_edition"]["field"] =

array("publisher", "year");

will list editions (in the form of a book) just by their publis her and year (we are
assuming that the identi�cation function going from edition to book is named
regards , and that edition has attributes named publisher and year).

Ordering Elements
By default, entities and relationships are ordered with res pect to their identi�er; this,
however, is not very meaningful. You can specify the display order of entities and
relationships by setting the variable $D[type]["orderBy"] to a string containing an
SQL order by -like order speci�cation: a list of comma-separated attrib ute speci�ers,
possibly followed by asc or desc (for ascendingor descendingorder). For instance,

$D["book"]["orderBy"] = "book.author,book.title";

would order books by author and title, in ascending order. In stead,

$D["loan"]["orderBy"] = "loan.startdate desc";

would put in front the most recent loans, and

$D["subscriber"]["orderBy"] = "person.lname";

would order subscribers by last name.

Note that you cannot order absorbed relationship types, and that you cannot use
non-monodrome relationship types in an order speci�cation (in any case, it would
not be meaningful).

Customising Filters
Each time ERW has to display a list of entities, relationship s or �les, it can provide a
�lter to allow the user to restrict the available choices. The default �lter works on the
content of the �rst attribute, but it can be customised. If se veral �lters are speci�ed,
they work in boolean conjunction. Moreover, multi-value at tribute speci�er generate
a �lter that is satis�ed if anyof the values in the associated list satisfy the value in the
�lter.

To customise �ltering, you specify a list of attributes over which �ltering must be
performed. Each attribute has a level, that is, a real number between 0 and 1 (inclu-
sive, with default 1/2) that expresses how signi�cant that a ttribute is with respect to
�ltering.

Each list displayed by ERW has a default level, too: it is 0 for main lists, 1/2 for
selection lists and 1 elsewhere. For each list, ERW will display only those �lter whose
level is greater than or equal to the list level, in de�nition order. Thus, by default main
lists and selection lists get all �lters, whereas no �lters a re used elsewhere. Note that
relationship types without �lters inherit the �lters of the ir source/target entity types.

The �rst array controlling �lters is $D[type]["filter"] . More precisely, for each
attribute speci�er (the �rst key), you can specify an ERW typ e (second key "type"),

33

Chapter 4. Customisation

an optional label (second key "label"; if the label is omitte d, the label of the attribute
will be used instead) and an optional �lter level (second key "level"; default 1/2).
Presently the ERW type must be the default ERW type associated to the ERL type of
the attribute, except for the ERL type a, for which the type t m ust be used. Since there
is a default �lter, and many levels of keys, it is usually a goo d idea to �rst reset the
array and then �ll one-by-one the desired entries.

As an example,

$D["book"]["filter"] = array();
$D["book"]["filter"]["author"]["type"] = t;
$D["book"]["filter"]["author"]["label"] = "Author(s)" ;
$D["book"]["filter"]["title"]["type"] = t;
$D["book"]["filter"]["isbn"]["type"] = t;
$D["book"]["filter"]["isbn"]["level"] = 0.1;

will allow to select a book by author, title andISBN code in the main list, but just by
author and title elsewhere. Moreover, the author �lter will be labelled “Author(s)”.

You have the full power of attribute speci�ers at your dispos al. For instance, you can
�lter subscribers on their �rst and last name:

$D["subscriber"]["filter"] = array();
$D["subscriber"]["filter"]["person.fname"]["type"] = t;
$D["subscriber"]["filter"]["person.lname"]["type"] = t;

Multi-value attributes may be very useful, too, assuming yo u want �lter out books
that have been lent to someone in particular:

$D["book"]["filter"] = array();
$D["book"]["filter"]["loan_person->lname"]["type"] = t;

And, of course, you can access the source/target entity type s of a relationship type,
and their supertypes. For instance,

$D["loan"]["filter"] = array();
$D["loan"]["filter"]["person_0.fname"]["type"] = t;
$D["loan"]["filter"]["person_0.lname"]["type"] = t;
$D["loan"]["filter"]["book_1.author"]["type"] = t;
$D["loan"]["filter"]["book_1.author"]["label"] = "Aut hor(s)";
$D["loan"]["filter"]["book_1.title"]["type"] = t;
$D["loan"]["filter"]["startdate"]["type"] = d;
$D["loan"]["filter"]["enddate"]["type"] = d;

would have the following effect: when editing loans, you wou ld get a �lter allowing
to select loans by borrower's �rst/last name, book author/t itle, and loan start/end
date. On the other hand, the �lters for selecting the loans of a certain person (in its
form) would be the book title and the loan start/end date (ana logously for a book).

Filtering on Owners and Groups

Must as in the case of labels, ERW sets up two virtual relation ship types, owner_usr
and share_grp . They behave as having type r1 , and you can use them not only in
speci�ers, but also directly as attributes, using the type r1s . As a result, the �lter will
contain a drop-down list with available users (or groups).

34

Chapter 4. Customisation

Filtering Levels

The second array controlling �lters is $D[type]["filterLevel"] . Its �rst key is
a list type (as explained in the Section calledThe Button Hook), and its second
key (which is to be speci�ed only if the �rst key is not main) is of the form
relationship-type _other-entity-type for relationships types, and attribute-name
for �lesets. It speci�es a �lter level (i.e., a real number be tween 0 an 1 inclusive) that
overrides the default for any of the lists appearing in a form , allowing �ne-grained
customisation.

As an example,

$D["book"]["filterLevel"]["rel"]["loan_person"] = 0;

will set up all �lters for searching persons who borrowed a bo ok.

The default �lter level can be changed in the default customi sation �le, using
the key chain $D[" * "]["filterLevel"] followed by a key giving the type of
list (as explained in the Section calledThe Button Hook). Thus, for instance,
$D[" * "]["filterLevel"]["rel"] = 0 would set all �lters for all relationship lists.

Default Values

Sometimes, in particular with very large databases, you may want to present since
the start a list which selects a subrange of items. to this pur pose, ERW allows you
to set default values for �lters. Similarly to default value for attributes, you have to
specify an SQL expression that will be evaluated to produce t he initial �lter value.
The expression must be stored using the key default (which is as the same level
as type , label etc.). For �lters with operators, you can also specify the pr eferred
operator using the key operator . For instance,

$D["loan"]["filter"] = array();
$D["loan"]["filter"]["startdate"]["type"] = d;
$D["loan"]["filter"]["startdate"]["default"] = "'2001 -01-01";
$D["loan"]["filter"]["startdate"]["operator"] = ">";

would show at start loans that began in the current millenniu m.

Hooks
Hooks allows you to customise part of ERW's user-interface a nd database processing,
or even to insert your own code in the middle of ERW's. They can be used to add your
own custom buttons at the bottom of a list or to check that comp lex constraints on
the content of the database �elds are satis�ed. Hooks are set up by setting suitable
variables in the customisation �le.

Writing hooks require some understanding of ERW's internal s; you may also need to
have a look at Chapter 10. A hook runs in a controlled environment, with a separate
variable namespace from the rest of ERW. For your convenience, all relevant global
ERW con�guration variables are accessible; moreover, for each variable a local copy
without the _ERW_pre�x is de�ned.

Some hooks may pass you arguments: they will be contained in t he associative array
$arg (the keys and the meaning of the values will vary from hook to h ook).

35

Chapter 4. Customisation

Caution
The local copies are really copies: if you modify them, the correspond-
ing global ERW variable will not be modi�ed. In some cases, this is not
what you want.

Besides the global con�guration variables, the following o nes are available:

$_ERW_db

A PEAR database connection. You can use all PEAR standard methods on it, or
you can directly use ERW's internal versions . Note that usually accessing types
not owned by the current entity could give rise to a database e rror.

$_ERW_userId

The id of type usr corresponding to the current user, or 0 if no user has been
authenticated, or if the authenticated user is not in usr .

$_ERW_auth

An associative array with keys select , update , insert and delete that describe
the current permissions.

$_ERW_locale

The locale that has been negotiated with the browser.

$_ERW_lang

The language part (the �rst two letters) of the locale that ha s been negotiated
with the browser.

Note again that you can access local copies of these variables under the names $db ,
$userId , and so on.

The Lock Hook
The lock hook is used during database update and deletion pha ses. It is set by as-
signing to the variable $D[type]["lock"] an array containing the names of tables
that must be locked together with the neighbourhood of the cu rrent entity. It allows
you to set up things so that you can atomically check and possi bly update your own
support tables during an atomic ERW transaction.

The Pre-update Hook
The pre-update hook is called beforeactually updating the content of a row (or in-
serting a new row). It is set by assigning to the variable $D[type]["preUpdate"] the
name of a PHP �le. Note that the �le is relative to the server di rectory where PHP
scripts are installed. If it exists, the �le is included and i ts return value (that you can
set using the return instruction) is checked. If it is the empty string (or null), the
check is considered successful. Otherwise, the returned string is considered to be an
error message: the changes will not be applied, the string wi ll be displayed and the
user will be presented again with the form he or she was trying to submit. Note that
in the case there are supertypes, pre-updates hooks are called starting from the max-
imal supertypes (i.e., supertypes that have no proper super type) and going down
to the actual type. Pre-update hooks for embedded (entity, r elationship and �leset)
types are executed afterwards.

To help in writing parametric scripts, the run-time envinro nment sets up four global
variables:

36

Chapter 4. Customisation

$mainType

The (entity or relationship) type of the element modi�ed or c reated by the form
currently processed.

$mainId

The numerical identi�er (primary key) of the element that ca used the current
hook invocation, or 0 in case the element is new.

$type

The (entity, relationship or �leset) type of the element mod i�ed or created by the
hook currently processed. This might differ from $mainType because of embed-
ded editing of relationships, weak entities or �lesets.

$id

The numerical identi�er (primary key) of the element that ca used the current
hook invocation.

During the execution of the pre-update hook, you can access a read-only global vari-
able $q (by declaring it as such or using the $GLOBALSarray) that contains the query
that it is going to be written. It is an associative array with two indices: the �rst index
is a entity type identi�er, and the second one an attribute id enti�er (note that in the
case of subtypes, more than one entity type could be involved). The corresponding
value is the quoted valuethat it is going to be written. By this we mean that strings are
actually quoted and escaped, and should be passed through the ERW::unquote()
function before being examined. Note that in almost all non- mandatory �elds one of
the possible values is NULL.

During the execution of the pre-update hook, all types in rel ation with or owned by
the current entity type are locked. Queries outside this set could give rise to an error.
However, you can use the lock hook to lock additional tables.

Caution
You should not try to change the locks in the pre-update hook. To main-
tain integrity, it is necessary that the pre-update and the update phase
are all executed under the same lock.

Example 4-1. Checking that a title is long enough

In our library, no book can have a title with less than two char acters. Thus, we set in
the custom �le of the book entity set the line

$D["book"]["preUpdate"] = "bookPreUpdate.php";
and �ll the �le bookPreUpdate.php with
<?php
global $q;
if (strlen(ERW::unquote($q["book"]["title"])) < 2) retu rn "Title too short!";
else return "";
?>

The Post-update Hook
The post-update hook is called after actually updating the content of a row (or in-
serting a new row). It is set by assigning to the variable $D[type]["postUpdate"]
the name of a PHP �le. Note that the �le is relative to the serve r directory where
PHP scripts are installed. If it exists, the �le is included (you have at your disposal

37

Chapter 4. Customisation

the same variables as in thepre-update hook). Usually at this point some additional
update or check of the database is performed.

Post-updates hooks are run initially for embedded (entity, relationship and �leset)
types. Then, the hooks for the element modi�ed or created by t he form are executed;
in the case of supertypes, hooks are invoked from the current type upwards (i.e.,
exactly in the dual way w.r.t. pre-update hooks). This allow s you to impose complex
contraints to relationships (even belonging to different t ypes), as you can check them
looking at the current database content during the post-upd ate hook.

After your custom checks and changes, you can return null to specify that you are
satis�ed with the current situation, or a string; in the latt er case, the transaction will
be aborted and the string will be displayed to the user as an er ror message (much
like a pre-update hook).

Warning
Transaction support is not currently available using MySQL. Returning
a non-null value will lead to unpredictable results.

During the execution of the post-update hook, the database i s still locked. This can
be changed, however, if necessary. The programmer must take into consideration
that changing a lock implies that another transaction could sneak in (maybe deleting
the row just inserted!). If the lock is not modi�ed, the post- update hook is executed
atomically together with the pre-update hook and ERW's upda te phase.

The Deletion Hooks
Hooks exists also to track entity deletions. They are activated, similarly to the
pre-update hook and to the post-update hook , by assigning the variables
$D[type]["preDelete"] and $D[type]["postDelete"] . The behaviour is in all
ways analogous to the update hooks, except that the only info rmation available is
the global variable $id containing the primary key of the entity that it is going to be
deleted.

The Post-Authorisation Hook
The post-authorisation hook is called just after the author isations for the current
element or type have been computed. It is set by assigning to the variable
$D[type]["postAuth"] the name of a PHP �le. Note that the �le is relative to the
server directory where PHP scripts are installed.

When the hook is run, the associative array $arg will be loaded with three keys:
type , providing the type for which the authorisation is being com puted, id , provid-
ing the element of the given type for which the authorisation is being computed
(it will be 0 if the authorisation is not element-speci�c), a nd auth , providing the
current authorisation array computed by ERW. The latter ass ociates a boolean val-
ues to the keys select , update , insert and delete ; each value speci�es whether
the corresponding privilege is granted for the current elem ent or type. Moreover,
it associates a string to the keys selectDenied , updateDenied , insertDenied and
deleteDenied : the string is the error message produced when the corresponding
privilege is denied. Note that in the case of a denied update p rivilege in the pres-
ence of select privileges, the message will be displayed but the user will be anyway
presented with a read-only form. Moreover, an empty string w ill cause no error mes-
sage to be displayed. You can modify the defaults for these messages by modifying a
suitable con�guration variable .

38

Chapter 4. Customisation

During the execution of the post-authorisation hook, you ca n just assume that the
given type and all authorisation-related tables are locked . Queries outside this set
could give rise to an error.

Example 4-2. Old book entries cannot be modi�ed

In our library, books older than 1950 have read-only entries : their data cannot be
modi�ed, and they cannot be lent. To obtain this effect, we ca n just check the publica-
tion year in a post-authorisation hook and clear the update p rivileges in a �le named
bookPostAuth.php :

<?php
if (ERW::getOne("year from book where id=".$arg["id"]) < 1 950) {

$arg["auth"]["update"] = false;
$arg["auth"]["updateDenied"] = "You can just browse this e ntry!";

}
?>
Of course, the custom �le for book will contain a line
$D["book"]["postAuth"] = "bookPostAuth.php";

Note that you can also access the usual variables available in a hook: if the restriction
does not apply to the users of group 1, then you can modify the h ook as follows:

<?php
if ($userGrp != 1 && ERW::getOne("year from book where id=". $arg["id"]) < 1950)

$arg["auth"]["update"] = false;
?>

The Selection-load Hook
The selection-load hook allows to restrict the elements that will be displayed to the
user in selection lists. You can specify for each relation adjacent to the current entity
a set of additional tables to insert into the from part of the SQL clause that will be
used to �ll the list, and also a set of constraints that will be joined to the where part.
For instance,

$D["person"]["loadSel"]["loan_book"]["from"] = array("loan");
$D["person"]["loadSel"]["loan_book"]["where"] =

array("loan.id1_book=book.id", "loan.enddate is not nul l");

would restrict the books that can be borrowed to those that ar e not currently on loan.

Caution
This hook is deprecated, and may not be supported in future versions
of ERW

The Button Hook
ERW provides editing for entities and relationships, but th ere are other services that
you might like to provide. For instance, a printed version of an invoice, or a pretty-
printed version of the list of entities. The button hook allo ws you to add buttons
at the bottom of lists that invoke JavaScript actions, which could in turn open new
windows that would be �lled by PHP code.

The button hook is activated by de�ning in the custom �le of an entity (or of a �leset)
an associative array named $D[type]["button"] . The �rst index is the kind of list
you want to attach the button to. Possible value are main , meaning that you will add

39

Chapter 4. Customisation

buttons to the main list; sel , meaning that you will add buttons in all lists used to
select entities to relate to the current entity; rel , denoting a list of relationships; and
fset , denoting the list of �les in a �leset. The value of the array f or each index must
be again an array where each element describes a button. Eachelement is in turn
an associative array with keys label , name, help and events . The values of label
and name will be the name and the label of the button, whereas the value associated
to the events key is an associative array, having as keys event attributes (onclick ,
onmousedown etc.) and as values fragments of JavaScript code to be executed. The
value of the help element will be displayed as a tooltip when the mouse passes over
the button.

Each relevant HTML element in a page generated by ERW has a well-de�ned identi-
�er. The main list for the entity A is named m_A. There are a number ofuseful functions
that let you access the JavaScript state.

Once you have the data you need, the best thing to do is usually to open a new
window and �ll it with a suitable PHP script. To this purpose, the function
openServiceWindow() is available: it opens a windows without navigation buttons
and loads it with the URL given as �rst parameter; the second p arameter is a
symbolic name for the window that is purely informative.

Example 4-3. Pretty-printing a book data.

Our librarian now asks for the possibility of pretty-printi ng the data of a book, and
of printing a report of all lends for a certain book. It is easy to prepare a couple
of PHP scripts doing that and outputting HTML. By adding the f ollowing to the
customisation �le for the entity book these features will also be easily accessible from
the main list:

$D["book"]["button"]["list"] = array(
array(

"label" =>
"Print data",

"name" =>
"data",

"help" =>
"Print all data related to the selected book",

"events" =>
array(

"onclick" =>
"if ((i = getSelectedId('m_book')) < 0)

alert('No book selected');
else openServiceWindow('data.php?id='+i, 'data')"

)
),
array(

"label" =>
"Print history",

"name" =>
"history",

"help" =>
"Print all loans related to the selected book",

"events" =>
array(

"onclick" =>
"if ((i = getSelectedId('m_book')) < 0)

alert('No book selected');
else openServiceWindow('history.php?id='+i, 'history')"

)
)

);

Of course, the scripts data.php and history.php must have a look at the variable
$id and produce the right data.

40

Chapter 4. Customisation

The Button Inhibition Hook
Sometimes you may want to keep the user from doing certain thi ngs, such as cre-
ating new elements, maybe providing your own buttons to do so me custom pro-
cessing (using the button hook). ERW provides a button inhibition hook that allows
you to select which of the standard buttons will be displayed . The inhibition hook
is activated by de�ning in the custom �le of an entity an assoc iative array named
$D[type]["inhibit"] .

If there is an entry of $D[type]["inhibit"] whose �rst key is ok , save , clone or
cancel , the corresponding form button will not be displayed.

Moreover, if there is an entry of $D[type]["inhibit"] whose �rst key de�nes the
type of list, as described in the Section calledThe Button Hook, and whose second key
is new, modify , delete , select , cancel , add , remove , apply , reset , or chown , then
the corresponding button will not be displayed.

Inhibition can be set in the default customisation �le. The k ey chain is
as above, but you should use " * " for the table name. Thus, for instance,
$D[" * "]["inhibit"]["clone"] eliminates the cloning button from all forms,
whereas $D[" * "]["inhibit"]["sel"]["new"] eliminates the new element button
from all selection lists.

Example 4-4. User front-end

Our librarian wants the users to be able to browse the database using ERW. Of course,
users should be able to scan the available books, and maybe some custom button
should make them able to print data about them, but we do not wa nt to confuse them
with other buttons. This can be obtained by adding the follow ing to the customisation
�le for the entity book :

$D["book"]["inhibit"]["list"]["new"] = true;
$D["book"]["inhibit"]["list"]["modify"] = true;
$D["book"]["inhibit"]["list"]["delete"] = true;

Note that using true as a value is purely incidental—any other (logically true) v alue
would have done the job.

The Form-Loading Hook
When creating a form for editing, ERW must decide whether it i s the case to provide
the user with a custom form. The chosen custom form depends on a key(by default,
the name of the type of the element), which however can be set depending, say, on
the user, using the form-loading hook.

The form-loading hook is activated by assigning to the varia ble
$D[type]["loadForm"] the name of a PHP �le: the string returned by the �le will
be used as a key to load the form (seethe Section calledForm Resolution).

Custom Forms
Custom �les are very useful, but they cannot, for instance, c hange the order in which
elements are displayed. Custom forms, instead, are a much powerful feature that al-
lows to structure freely ERW's editing forms.

41

Chapter 4. Customisation

A custom form is de�ned by an XML document in ERF. Once the form has been cre-
ated, it must be compiled using ERtool and the resulting PHP �le must be installed
in the custom form directory (which is de�ned by a suitable con�guration variable).

Form Resolution
Forms may present the user with information in different ord er, different language,
different level of authorisation, and so on. To provide maxi mum �exibility, ERW de-
�nes a form resolutionprocedure that determines the form that will be actually loa ded
in a certain circumstance.

First of all, form resolution is based on a key, which by default is given by the name
of the type of the element the form will be used with. Thus, the default key for the
form of a book is book . Once the key is determined, ERW tries �rst to �nd a form
named key . current-locale .php , e.g.,book.it-IT.php . If the form cannot be found,
ERW will try key . current-language .php , e.g.,book.it.php . Finally, ERW will try to
load key .php , e.g.,book.php (this process is very similar to the one used by Apache
to load language-dependent pages).

There are two ways to change the default key: the form key hook , which lets you
choose the key using PHP code, and theform ERF attribute, which sets the form key
for an embedded form.

ERF: an Entity-Relationship Form Language
ERF is an XML-based language that is used to describe custom forms.

Note that there are two kind of forms: embeddedand non-embedded. Non-embedded
forms are the standard ones: using them, you alter each element of an ERW database.
Embedded forms, on the other hand, allow you to edit relation ships directly into the
form of an entity, or to edit weak entities directly into the f orm of the owner. The
main difference is that non-absorbed relationship types an d �lesets cannot be part of
an embedded form.

A Quick Tour

Before giving the reference to ERF elements, it is useful to have an informal discus-
sion of what you can describe in ERF.

ERF documents looks really like XHTML documents. Indeed, ER F contains a selec-
tion of XHTML elements (e.g., div , style , ecc.) and a custom form looks like a sim-
pli�ed XHTML page. The interesting point, however, is that p lacing suitably input
and list elements you can place freely ERW input controls and lists al ong the page.
If you want to have a look at sample ERF custom forms, ERtool can produce for each
type a form giving the standard look. For instance, the form p roduced for a person
looks as follows:

<?xml version="1.0"?>
<!DOCTYPE erf PUBLIC "-//DSI//DTD ERF V1.0//EN" "file://e rf.dtd">
<erf ref="person">

<input ref="fname"/>
<input ref="lname"/>
<list ref="loan_book"/>

</erf>

A corrsponding customised form has been shown in
the Section calledA Simple Examplein Preface(more precisely, in Figure 7).

42

Chapter 4. Customisation

Elements

In this section we list all ERF elements, giving in detail the ir usage and meaning. First
of all, there are XHTML-like elements h1, h2, h3, h4, h5, h6, div , fieldset , p, span ,
em, strong , i , b, sup , sub , samp, code , var , legend , and img , which possessid , class
and style attributes, and an element style with attribute type . The element img has
also attributes src , alt , longdesc , width , and height . Finally, there is an element a
with an additional attribute href , but note that for obvious reasons the linked page
will be always opened in a new window. For the meaning of these elements and
attributes, please refer to the HTML or XHTML documentation .

erf

Name
erf — A whole custom form

Synopsis
The erf element is the top-level element of an ERF document. It contains any other
ERF element.

Attributes

ref

The type this form refers to.

emb

A boolean denoting whether this form is embedded or not. If no t speci�ed, it is
assumed to be false.

input

Name
input — An input control

Synopsis
The input element de�nes where the input control(s) for a certain attr ibute will ap-
pear in the form.

Attributes

ref

The ERL attribute this element refers to.

43

Chapter 4. Customisation

label

An alternative label for this attribute. If not speci�ed, th e localised version of the
label speci�ed in the ERL �le will percolate through.

help

Alternative help text for this attribute. If not speci�ed, t he localised version of
the help text speci�ed in the ERL �le will percolate through.

type

An ERW type. If not speci�ed, the type speci�ed in custom �les will percolate
through.

size

For the types for which it is meaningful (e.g., text), the siz e of the HTML input
control.

readonly

If true, this attribute cannot be changed by the user.

tabindex

This attribute is in all ways identical to the corresponding HTML attribute, and
will be passed to the HTML input control.

list

Name
list — An input list (or set of lists)

Synopsis
The list element de�nes where the list(s) for a certain relationship or �leset type
will appear in the form (this includes also transpose of iden ti�cation functions, in
which case you are really editing owned weak entities).

Attributes

ref

The �leset or relationship type this element refers to.

label

An alternative label for this (set of) lists(s). If not speci �ed, the localised version
of the label speci�ed in the ERL �le will percolate through.

help

Alternative help text for this (set of) list(s). If not speci �ed, the localised version
of the help text speci�ed in the ERL �le will percolate throug h.

44

Chapter 4. Customisation

type

An ERW type. If not speci�ed, the type speci�ed in custom �les will percolate
through.

form

A form key that will be used in the form-resolution process to load the embed-
ded form for this (set of) lists(s).

readonly

If true, this �leset or relationship type cannot be changed b y the user.

tabindex

This attribute is in all ways identical to the corresponding HTML attribute, and
will be passed to the HTML input control.

45

Chapter 4. Customisation

46

Chapter 5. Authentication and Authorisation

ERW is designed to work well in complex intranets in which sev eral users access data
with different privileges. This requires two basic service s, that is, authentication and
authorisation. By default, ERW delegates completely the au thentication process to
the HTTP server. The system administrator should set up dire ctory access, accounts
and passwords so that PHP can �ll its internal variables 1.

Custom Authentication
If you prefer to set up your own authentication system, you ha ve just to set the
$_ERW_authenticate variable in the main con�guration �le. This variable must be
set to the name of a PHP �le containing code that will perform a uthentication,
usually looking at the content of the $_SERVER["PHP_AUTH_USER"] and
$_SERVER["PHP_AUTH_PW"]. The code will run in the same environment of a hook,
must end with a return statement, and must return true or false , depending
whether the user is authenticated or not. A nonauthenticate d user will be presented
with the typical HTTP basic authorisation dialog; you can se t the basic realm (that
will be shown to the user) using the con�guration variable $_ERW_basicRealm .

Note: You can extend at will the default authorisation-related entities contained in
auth.xml , for instance adding a password attribute (with ERW type pw) to the entity usr .

For instance, assuming that you added a password column to the usr table, you can
use the following code:

<?php
return $db->getOne("select COUNT(*) from usr where ".

"login=".ERW::quote($_SERVER["PHP_AUTH_USER"]).
" and password=".ERW::quote($_SERVER["PHP_AUTH_PW"])) ;

?>

Put this code in a �le named, say, authenticate.php located in the main server di-
rectory, set $_ERW_authenticate to "authenticate.php" in the main con�guration
�le and you're done.

The Authorisation System
The permission system used in ERW follows strictly the UN*X c onventions, and if
you are used to those conventions you will �nd it very natural . To enable it, you must
include the XML entity &ERWauth; in your ERL �le. This will include the XML �le
auth.xml , which generates a few tables that ERW uses to keep track of authorisation
information. The table de�nitions can be extended at will (f or instance, providing a
password �eld), as long as the relational structure and the p rovided attributes are left
intact. If you do not include &ERWauth; , everyone can do everything.

Warning
Even if you do not want to use authorisation, you cannot use the name
type for a type, as it is used to detected the presence of the authorisa-
tion system.

First of all, there are entities types usr and grp (with obvious meaning), related by
belongs and by primary . In this way you can set up accounts (for each account you
must specify a mandatory real name and an optional e-mail add ress) and groups

47

Chapter 5. Authentication and Authorisation

(to organise authorisation information). In particular, f or each user you can specify a
primary group, which plays a special rÃ´le.

Then, the entity type type is used to set up authorisations. Each entity in type has
a name, which should be the name of an entity, relationship or dynamic enumera-
tive type. If a type is not listed in type , then everyone can do with it whatever is
granted by the global privileges (which by default are all, b ut this can be changed in
the con�guration �le). As soon as a type is entered into type , however, it becomes ac-
cessible onl id="peci�ed users"y to the speci�ed users and g roups (it is easy to forget
to register a type in type : however, there is a script that can do the check for you).

For each type you can separately specify (globally or on a user/group basis) select,
update, insertand deleteprivileges. Users holding select privileges can list and in spect
elements of a given type; users holding update privileges ca n modify elements of
that type; users with insert privileges can add new elements of that type; users with
delete privileges can delete elements of that type.

As explained in the de�nition of the ent element, you can specify that you want
each entity of certain type to have an owner (and a group), tha t is, that you want
element-based authorisation. In this case, the owner of an entity has some additional
privileges on the entity (even if there are no global privile ges). More precisely, when a
user holding insert privileges on a entity type creates a new entity, the entity will have
the user as owner and the user's primary group as group. These two assignments
determine the additional privileges.

Each type has separate user select, group select, user update, group update, user
delete and group delete privileges. The meaning is rather ob vious: for instance, if user
update is on, then users have update privileges on the entiti es they own, whereas if
group delete is on, then users belonging to the group of an ent ity (or having has pri-
mary group the group of the entity) have delete privileges on the entity. Moreover,
each set of authorisations granted to a user or a group may add typewise or elemen-
twise additional privileges (e.g., a user authorisation ma y grant to a certain user for
a certain type just user select privileges). In the end, a user gets all authorisations
granted typewise, plus all elementwise authorisations gra nted to the user itselfs or
to one of the groups the user belongs to.

To allow more �exibility, even if user and group select privi leges are granted, you
can tune in a �ner way the entities shown to the user as explain ed in detail in
the Section calledThe Selection Level Tuning.

Important: Once you have update privileges on an entity, you have the same privileges on
all incident relationship, that is, you can insert, delete or update any relationship involving
the entity. This is natural, as relationships are essentially properties of the entity. Note,
however, that if you edit a relationship type directly the permission you get are just those
given for that type.

Some care must be taken when you deny global select privileges on a type: when you
edit a relationship type from an entity form, you should have some select privileges
for all entities adjacent by means of an editable relation (b ecause ERW has to list
elements for you to select them).

Changing Owner
If you have update privileges on a whole entity type, you can change the owner of
its entities. If you have update privileges on an entity you c an assign a group to the
entity.

Note: Unless you have update privileges on the type, you cannot give ownership to some-
one else, and you cannot choose a group the owner does not belong to.

48

Chapter 5. Authentication and Authorisation

The Selection Level Tuning
Each list displaying entities whose type has element-based authorisation may feature
a distinct selection level. This level allows to set independently whether the user can
see the entities it owns, the entities having its primary gro up, or the entities having a
group the user belongs to.

The mechanism is the same used when doing customisations. There are
three constants, ERW_SELECTLEVEL_USER, ERW_SELECTLEVEL_PRIMARY, and
ERW_SELECTLEVEL_GROUP, that represent the three levels available. They
are bit masks, so, for instance, you can write ERW_SELECTLEVEL_USER |
ERW_SELECTLEVEL_PRIMARYto mean that you want to list entities the user owns or
entities whose group is the user's primary group.

There are variables you can set in the default customisation �le, using the key
chain $D[" * "]["selectLevel"] followed by a key giving the type of list (as
explained in the Section calledThe Button Hookin Chapter 4). Thus, for instance,
$D[" * "]["selectLevel"]["list"] = ERW_SELECTLEVEL_USER sets the default for
main entity lists to entity owned by the current user.

For a �ner tuning, you can set separately the level for each li st. The relevant
variable is $D[" table "]["selectLevel"] . Its �rst key is a list type, and its second
key (which is to be speci�ed only if the �rst key is not main) is of the form
relationship-type _other-entity-type for relationships types.

As an example, assuming that we required element-based authorisation for person ,
and that we did not grant table-wise select privileges,

$D["book"]["selectLevel"]["sel"]["loan_person"] = ERW _SELECTLEVEL_USER;

will force only persons we own to be listed for creating loans .

Restrictions on Element-Based Authorisation
Element-based authorisation is useful, but it can easily le ad to inconsistencies. For
instance, if A is a B and you require element-based authorisation for both entit y types,
you could end up with a different owner for the same entity whe n you see it as of
either of the two types. Fixing a choice (i.e., the most speci�c type) doesn't help much,
as you would have redundant (and possibly nonvalid) informa tion in A.

The solution chosen in the design of ERW is based on two princi ples:

1. If an entity type has element-based authorisation, all it s subtype have it, too.

2. Only root types may have element-based authorisation.

A root typeis an entity type that is maximal (i.e., it has no proper super type) and such
that all its subtypes have exactly one maximal supertype. In other words, a root type
is the maximum type of the type hierarchy it belongs to.

For instance, if A is a B and also a C, then B and C are maximal, but they are not root
types. So no type in this hierarchy may have element-based authorisation.

If, however, we have an additional type D such that both B and C are D, then D is a
root type, and by requiring element-based authorisation fo r D we will get it for all
subtypes of D.

In practise, if you do not have type hierarchies you can use el ement-based authorisa-
tion at will. If you have type hierarchies, you can use it only on hierarchies having a
maximum type. If you really need several maximal types, you c an always add a fake

49

Chapter 5. Authentication and Authorisation

root type without attributes having all maximal types as dir ect subtypes (and maybe
make it abstract).

Notes
1. Of course, nothing prevents you from using the post-update hook to set up spe-

cial forms that will actually make a user able to manipulate t he server password
�le.

50

Chapter 6. Transaction Support

ERW provides partial support for SQL transactions and const raints. The support does
not work presently for MySQL.

The usefulness of SQL-based constraints is evident if you access your database with
different clients: in this case, including constraints at t he SQL level avoids duplicating
efforts.

ERW runs all update and delete operations inside a transacti on. In case of an SQL
error, the transaction is rolled back. The same happens when a post-update hook or
a post-delete hook returns a non-null value.

However, to avoid cluttering the code logic, SQL errors caus e a log to be written, and
no further action being taken. This usually results in the us er seeing an empty form,
or a form with empty lists.

The notable exception, however, is the insertion or update o f entities, and the com-
mit phase at the end of an update or delete operation. In this c ase, errors lead to pre-
senting again to the user the form that was submitted, displa ying the error message
coming from the database (unfortunately, the message coming from the database is
often not exactly explicative).

Thus, you can easily add SQL constraints to your database, if they are checked during
one of the phases above. For instance, deferred constraintsare checked during the
commit phase; thus, they are handled correctly by ERW.

The endorsed way of writing SQL-based constraints is thus to write SQL views and
constraints that incorporates your checks, and call the fun ctions from a post-update
or post-delete hook.

51

Chapter 6. Transaction Support

52

Chapter 7. Installation and Con�guration

Installing ERW is not a very complicated operation. However , there are several de-
tails that must be set up correctly in the environment for ERW to work.

The Run-Time Environment
The �rst step toward using ERW's powerful editing forms is in stalling all PHP scripts
coming with the distribution (the content of the php directory) somewhere where
they can be served by Apache . These scripts contain the run-time environment that
produces the editing forms starting from the de�nition �les produced by ERtool .

More precisely, the �le ERW.php and the directory ERWcan be installed in any place
where PHP searches for source �les (i.e., /usr/share/php), whereas the remaining
�les must be placed in a directory served by Apache . A reasonable option is to install
all �les in a generic place (e.g., /usr/share/ERW/php) and then create symbolic links,
but in this case you must be sure that the Apache FollowSymLinks option is on.

The second step is producing de�nition �les with ERtool and making them accessi-
ble to the run-time environment. As a �rst try, you should pla ce the de�nition �les
in a directory named defs located in the same directory of the scripts (it is the place
where de�nition �les are searched for by default). As a �rst a ccess method, you can
change the name of index.orig.php �le to index.php : it produces a list of links to
the pages that allow you to choose and edit elements of the database. However, you
should devise some custom access page that �ts your needs.

The ERW-conf.php Initialisation File
All components of the run-time environment source initiall y the �le
/etc/ERW-conf.php , and a �le named ERW-conf.php in the current directory. These
�les must contain de�nitions for a number of parameters; the y are normal PHP
�les, so you can, for instance, use conditionals to provide d ifferent parameters on
different virtual hosts. A sample �le named ERW-conf.orig.php is provided for
your convenience.

The following variables are de�ned in the �le above: note tha t, following the PEAR
convention, their name always start with _ERW_.

$_ERW_erlId

This string must match the identi�er given to the erl element (seeerl).

$_ERW_dbType

The type of the database you are using. Any PEAR speci�er (mysql , pgsql ,...)
will do the job.

$_ERW_dbOptions

If this variable is de�ned, it will be passed as second argume nt to the PEAR
DB::connect() call. Currently, the only allowed value is true , which requires
persistent connections to the database, if available.

$_ERW_dbHost

The name of host running the database server.

$_ERW_dbName

The name of the database that should be used.

53

Chapter 7. Installation and Con�guration

$_ERW_dbUser

The user name with which to access the database.

$_ERW_dbPassword

The password to access the database as the user$_ERW_dbUser.

$_ERW_defsPath

A relative or absolute path specifying the directory where t he ERtool -generated
con�guration �les are stored.

$_ERW_customPath

A relative or absolute path specifying the directory where t he custom con�gura-
tion �les are stored.

$_ERW_formsPath

A relative or absolute path specifying the directory where t he custom forms are
stored.

$_ERW_utf8

If set to true, this variable enables UTF-8 support .

$_ERW_htmlArea

If set to a string, this variable enables HTMLArea support . The string must be
a path (which can be relative to the document root) leading to the HTMLArea
installation; usually, installing HTMLArea in the documen t root in a directory
named htmlarea and setting this variable to htmlarea/ is a good choice.

$_ERW_fckEditor

If set to a string, this variable enables FCKeditor support . The string must be
a path (which can be relative to the document root) leading to the FCKeditor
installation; usually, installing FCKeditor in the docume nt root in a directory
named fckeditor and setting this variable to fckeditor/ is a good choice.

$_ERW_jsCalendar

If set to a string, this variable enables JSCalendar support. The string must be
a path (which can be relative to the document root) leading to the JSCalendar
installation; usually, installing JSCalendar in the docum ent root in a directory
named jscalendar and setting this variable to jscalendar/ is a good choice.

$_ERW_localePath

An absolutepath specifying the directory where gettext localisation � les are
stored. If you need to specify a directory relative to the doc ument root of the
HTTP server, use the PHP variable $GLOBALS["DOCUMENT_ROOT"].

$_ERW_fixedLocale

A �xed locale, which will override the one provided by the bro wser. Set it to the
empty string if you want to use the locale provided by the brow ser.

$_ERW_defaultLocale

A default locale, to be used instead of en-US when the browser does not provide
a locale, and no �xed locale has been set.

$_ERW_decimalPoint

The character for the decimal point (i.e., the character that separates the integer
and the fractional part of a number).

54

Chapter 7. Installation and Con�guration

$_ERW_decimalComma

The character for the decimal comma (i.e., the character that separates triples of
digits in the integer part of a number).

$_ERW_dateFormat

A number denoting the date format you prefer. It can be ERW_DATE_ISO,
ERW_DATE_EU, or ERW_DATE_US. See alsoChapter 11.

Warning
Do not make on-the-�y changes to this value—changing
it should be considered as severe as installing a
new version of ERW. Browser caching of JavaScript
code can cause pernicious inconsistencies (see also
the Section called Caching in Chapter 3.

$_ERW_supportedLocales

A PHP array of locales for which translations are available. HTTP language ne-
gotiation will be used to select the most appropriate one. Th is variable defaults
to array("en-US") .

ERW will try to match the locale requested by the browser with one of the sup-
ported ones. As a last resort, it will use a country-speci�c l anguage (such as
en-US) for a generic language (such asen). Thus, the order in the array is impor-
tant: if you specify array("en-UK", "en-US") , upon a generic request for en
the user will get the en-UK locale.

$_ERW_fileBasePath

An absolute path indicating the directory where all �les rel ative to the database
are stored. A hierarchy of subdirectories (one for each enti ty, and then one for
each �leset) will be created automatically when �les are upl oaded.

Important: This directory (and its subdirectories) must be writable by the user under
which Apache runs (usually apache or nobody).

$_ERW_authenticate

The name of a PHP �le, containing code for custom authenticat ion. See
Chapter 5.

$_ERW_globalPrivileges

A conjunction of the bit masks ERW_SELECT, ERW_UPDATE, ERW_INSERTand
ERW_DELETEthat gives the global privileges. The default value is ERW_SELECT |
ERW_UPDATE | ERW_INSERT | ERW_DELETE(i.e., all privileges to everybody).
Seethe Section calledThe Authorisation Systemin Chapter 5.

$_ERW_authDenied

Default error messages for denied authorisations. This arr ay must associate to
the keys selectDenied , updateDenied , insertDenied and deleteDenied cor-
responding error messages (an empty message will silence the error display).
The messages can be further customised using thepost-authorisation hook .

$_ERW_basicRealm

If you set up custom authentication, this is the basic realm t hat will be shown to
the user in the authentication dialog.

55

Chapter 7. Installation and Con�guration

$_ERW_logLevel

A number denoting the logging level required. It can be ERW_DEBUG,
ERW_WARNING, ERW_INFOor ERW_DEBUG.

The following variables set up defaults for the user prefere nces. They can be recorded
in a cookie, so each user can have a different setup.

$_ERW_fontSize

The font size, in points. 0 corresponds to “medium” in CSS lan guage (i.e., the
user preferred size).

$_ERW_numRows

The number of rows for �xed with elements. This variable is an associative array,
indexed by a (for TEXTAREAelements), l (for main lists), s (for selection lists in
relation editing), r (for relationship lists), and f (for �lesets).

$_ERW_uploadFrameHeight

The number of pixels of the inline frames containing the HTML elements manag-
ing �le uploads for TEXTAREAelements and �lesets. If it is possible to determine
at runtime the correct width and height of these frames, ERW w ill do it, but in
case something goes wrong, the starting height can be tuned by the administra-
tor, or even by the user.

$_ERW_useFieldsets

ERW uses theFIELDSET element to group items. In some very old browsers such
elements may cause layout problems. In this case, you can setthis variable to
false.

$_ERW_useOriginal

Since 1.0.10, ERW keeps track of the original �lename of each�le in a �leset. This
feature, however, is disabled if not enabled explicitly by s etting this variable to
true, as it is not compatible with previous versions. The def ault con�guration
�le sets this variable to true, so that original �lenames are enabled by default in
new installations.

Con�guring PHP
There are also a few option that must be set up in PHP for ERW to w ork:

No magic quotes.

All “magic quote” options must be turned off. More explicitly,

magic_quotes_gpc = Off
magic_quotes_runtime = Off
magic_quotes_sybase = Off
To be true, only the �rst line is strictly necessary: ERW can t urn off the other
settings internally.

The ; separator.

ERW uses the W3C-endorsed separator; for separating the query part of a URL.
The original symbol, the ampersand, was not well thought, as it should be really
written & . You should add the line

arg_separator = "&;"
or

arg_separator.input = "&;"

56

Chapter 7. Installation and Con�guration

(depending on your PHP version) somewhere in you PHP con�gur ation �le.

Include paths

PHP must be able to retrieve both PEAR scripts and ERW run-tim e scripts. A rea-
sonable setting (which however may very depending on your op erating system
and distribution) is

include_path = ".:/usr/share/pear:/usr/share/php"
if you installed the scripts as suggested in the README.

Logging

ERW is a complex system, and heavy logging can be really useful when you do
not know what's happening. You should activate all warnings and log them to
a suitable �le (ERW tries to never use a variable that it is uns et, so that you can
easily track typos in variable names). It is not a good idea to output errors on
the page being generated, as they will disturb the output mor e than necessary.
A suitable setup, for instance, is

error_reporting = E_ALL
display_errors = Off
display_startup_errors = Off
log_errors = On
error_log = /var/log/httpd/php_log
Note that the log �le must be writable by the user running Apache .

Large uploads

If you plan to use �lesets, and foresee uploads of large docum ents, you should
probably set the suitable PHP variables to suit your needs, f or example:

memory_limit = 20M
post_max_size = 20M
upload_max_filesize = 20M
If you plain playing with �lesets, it is probably also a good i dea to override the
default upload_tmp_dir .

Con�guring HTMLArea
HTMLArea 1 support is a bit experimental, but it works. Essentially, yo u can use an
ERW type (ha) to specify that an area of text should get a WYSIWYG editor. Note
that presently HTMLArea works only on Gecko-based browsers and Explorer—in
all other supported browsers the effect will be the same as th at of a.

First of all, you must download and install HTMLArea 3 (or hig her) and set
a suitable con�guration variable . Then, there are several ways to customise
HTMLArea. For the time being, con�guration is common to all i nstances, and
contained in the �le js/htmlAreaConfig.js in the document root. The code
contained therein is evaluated immediately after loading H TMLArea (technically,
before calling HTMLArea.init()) and must assign to the variable htmlAreaConfig a
function returning an HTMLArea con�guration object. Final ly, the con�guration
object can contain an optional erwPlugins �eld, which must be an array containing
the names of the plugins you want to register in each HTMLArea instance (it is
your responsibility to load those plugins). For more inform ation, have a look at the
HTMLArea documentation.

As an example, the sample �le provided with ERW loads some plu gins, and then
just makes the background white. Note that is essential that plugins are loaded before
HTMLArea.init() , whereas they must be registered after the creation of an HTM-
LArea editor:

var erwPlugins = ["TableOperations", "ContextMenu", "Cha racterMap"]

57

Chapter 7. Installation and Con�guration

for(var i in erwPlugins) HTMLArea.loadPlugin(erwPlugins [i])

htmlAreaConfig = function() {
var config = new HTMLArea.Config()
config.pageStyle = 'body { background-color: white }'
config.erwPlugins = erwPlugins
return config

}

Caution
HTMLArea is fantastic in theory, but it is a very fragile piece
of software. For instance, if any of the plugins you are using
has no translation for the current language, HTMLArea will not
start, without giving any message. Always check that you have
translations for all plugins you use in all languages speci� ed in
$_ERW_supportedLocales con�guration variable (we use the �rst two
letters of the locale to select HTMLArea's language). A reasonable
trick is to add all missing languages as soft links to the English version
(and be sure that your server follows soft links).

Another relevant problem is that, as of this writing, HTMLArea ruth-
lessly overwrites the unload event handler. As a result, users closing a
window after having made some changes will not be warned that their
changes have been lost. The only solution is removing manually from
HTMLArea's code the guiltly lines (search for "unload" in htmlarea.js).
Moreover, HTMLArea does not call the change event handler when the
text changes. As a result, changes performed in an HTMLArea text edi-
tor will not cause warning messages about changes being cancelled or
lost.

Con�guring FCKeditor
FCKeditor 2 is a more supported alternative to HTMLArea . Also FCKeditor works
only on Gecko-based browsers and Explorer.

First of all, you must download and install FCKeditor 2 (or hi gher) and set
a suitable con�guration variable . Then, FCKeditor can be easily con�gured using
XML and some JavaScript �les.

Caution
The warnings given for HTMLArea are valid also here. In particular, at
the time of this writing FCKeditor has no of�cially supporte d way to set
its content after it has been created, so ERW must dig into its internals.

Con�guring JSCalendar
JSCalendar3 can be used to add to date input �elds a button that let that use r choose
a date using a pop-up calendar. For the time being con�gurabi lity is limited. Essen-
tially, you can use an ERW type (jd) to specify that a JSCalendar button should be
added to a date attribute (if JSCalendar is not con�gured, yo u will not get the but-
ton). JSCalendar should work on all browsers supported by ER W

First of all, you must download and install JSCalendar (or hi gher) and set
a suitable con�guration variable . Then, there are several ways to customise
JSCalendar. For the time being, you can only con�gure the loo k of the calendar by
setting a suitable style sheet to be loaded. Thedefault ERW style sheet shows how
to load a style sheet.

58

Chapter 7. Installation and Con�guration

Caution
The warnings given for HTMLArea are valid also here. Be very careful,
in particular, with translations, which are selected automatically.

Notes
1. http://www.htmlarea.com/

2. http://www.fckeditor.net/

3. http://www.dynarch.com/projects/calendar/

59

Chapter 7. Installation and Con�guration

60

Chapter 8. ERtool

The �rst component of ERW you will have to deal with is ERtool , which is re-
sponsible for analysing ERL �les, checking the consistency of the entity-relationship
schemata they describe, and produce various outputs depending on the options you
speci�ed.

ERtool is a Java™ (version 1.4 or greater) application, and as such comes in the form
of a Java archive, a �le containing a number of Java classes in compressed form. The
Java archive of ERW is, not surprisingly, named erw.jar . When you want to recall
ERtool , you must be sure that the archive is installed in the extensi on directory, or
that you provide suitable options to Java, or that you set the $CLASSPATH environ-
ment variable, so that it can �nd the class.

Said that, ERtool is a Java class whose complete path isit.unimi.dsi.erw.ERtool .
Thus, you can invoke it with java it.unimi.dsi.erw.ERtool < filename , since it
expects to read an ERL �le from standard input. The archive erw.jar contains
also a Javamanifestthat allows you to run ERtool just with java -jar erw.jar
<filename .

As a commodity, a command named ertool (a script shell that invokes the Java class)
is also provided. It takes the same arguments as the Java class.

After searching for the ERL DTD in the current directory, ERtool looks in
/usr/share/ERW/dtd and �nally at the directory de�ned by the Java property
it.unimi.dsi.erw.dtddir ; this property is automatically set by the ertool
command using the content of the ERW_DTD_DIR environment va riable. Indeed,
setting this variable is the easiest way to guarantee that the ERL DTD will be
available. You can also set the variable manually, using, for instance, java -jar
erw.jar -Dit.unimi.dsi.erw.dtddir= directory <filename .

Warning
A common problem with running ERtool is that it cannot �nd the ERL
Document Type De�nition (DTD). Often setting up an SGML/XML sys-
tem is not so easy, so the simplest thing to do is to put everything in
/usr/share/ERW/dtd , or to be sure that the current directory contains
all DTD-related �les when running ERtool (you can copy them or create
symbolic links), or set up correctly ERW_DTD_DIR.

Options
Without options, ERtool will simply read an ERL �le from standard input and check
it for syntactic and semantic errors. However, there are a nu mber of options that will
select a back-end and produce useful output:

--sql

Activates the SQL back-end. The entity-relationship schema is rei�ed, and com-
plete SQL code creating all necessary tables is printed to standard output. This
code can be saved or even directly piped into a database client.

--defs

Activates the de�nition back-end. A number of PHP �les will b e created in the
current directory, one for each entity type, relationship t ype, and for each in-
stance of �leset or dynamic enumerative type. These �les sho uld be moved in a
place accessible to the run-time environment.

61

Chapter 8.ERtool

--defs-utf-8

As above, but instead of using the standard PHP encoding (ISO-8859-1), de�ni-
tion �les will be output in UTF-8 encoding. This is essential if you are using the
UTF-8 support .

--forms form1 form2 . . .

Activates the forms back-end. For each form speci�ed (an ERF �le), a
corresponding PHP �le coding the form will be produced. Thes e �les should be
moved in a place accessible to the run-time environment.

--forms-utf-8

As above, but instead of using the standard PHP encoding (ISO-8859-1),
forms will be output in UTF-8 encoding. This is essential if y ou are using the
UTF-8 support .

--default-forms

Outputs default forms (embedded and non-embedded) for all t ypes in the
schema. Compiling those forms and installing the resulting PHP �les would
not modify ERW behaviour, as they are equivalent to the run-t ime environment
generated default form. However, you can modify them to prod uce custom
forms.

--doc

Activates the documentation back-end. A DocBook 4.1.21 XML �le commenting
in detail the entity-relationship schema and the rei�catio n process will be printed
on standard output. You can then easily convert it to your pre ferred format.

--dot

Activates the DOT language back-end. The output can be formatted using
the dot utility from the GraphViz 2 suite of tools. More details can be found in
the Section calledThe DOT graphical back-end.

--i18n type

Activates the internationalisation back-end. The output i s a gettext template �le
that contains all the attributes and leg labels (if type is label), all the labels of
static enumerative types (if type is enum) or all the help strings (if type is help).
The �le can be then used for translations or manipulated with standard gettext
commands. SeeChapter 11.

Checks
ERtool performs a number of checks to ensure that your entity-relat ionship schema
is sensible, that it respect the limitations of the run-time environment, and that it does
not contains cardinality constraints so strict that they wo uld make modi�cations to
the database impossible. Most of the error messages are selfexplanatory, but some
explanation is necessary about cardinality constraints.

Recall that an entity-relationship schema is a directed graph. Thus, it makes sense to
speak of directed cycles, sequences of contiguous arcs (with the right direction) th at
form a cycle.

The �rst check performed by ERtool is that no such cycle is formed by total injective
relationship types. In such a case, it is impossible to modif y the database using only
local modi�cations (that is, using ERW), as all entity sets a long the cycle are forced to
have the same cardinality. In this case ERtool will stop with an error.

62

Chapter 8.ERtool

Then, ERtool checks that there is no cycle formed by total relationship ty pes. To
insert an entity in a type belonging to the cycle you need to re late it with some other
entity, and this initially impossible. However, if you manu ally insert some data in the
entities, the problem is solved, so ERtool will just warn you.

Finally, it is necessary to make sure that it is impossible th at an instance of the schema
contains two distinct ownership paths between two entities (in particular, it must not
be possible that an entity owns itself); to this purpose, ERW uses a novel algorithm
that is able to discover statically if such paths can exist, l ooking at the type structure
of the schema.

Error Messages
Most error message of ERtool are self explanatory. We gather here the most obscure
ones.

A relationship type must be multi in both legs or none

As explained in the Section calledEntity-Relationship Schematain Chapter 1, car-
dinality constraints have some restrictions: if you ask for a multirelation on one
leg, you must do the same on the other.

You cannot declare bijections--if both legs have upper 1, one leg must have lower 0

Bijections are of no use in ERW, because they make entities impossible to create
or delete (as the entity sets adjacent to bijections must always have the same
number of elements).

You cannot declare injective relations that are not partial functions--they must be
transposed

An injective relation is the transpose of a partial function . For simplicity, in ERW
partial functions are always absorbed into their source: if you declare an injective
relation that is not a partial function, ERtool should absorb it into its target. You
just have to exchange the two legs.

Only the �rst leg can be a key

For simplicity, in ERW identi�cation functions start from t he weak entity type
and end on the owner. You just have to exchange the two legs.

The DOT graphical back-end
There is currently no graphical editing tool for ERL �les. Ho wever, there is a graph-
ical back-end outputting (parts of) a schema in the DOT langu age. The DOT �le can
then be processed using standard tools from the GraphViz 3 suite of tools, which con-
tains layout generators, GUI editors, etc.

To activate the back-end you must use the --dot option, followed by a (possibly
empty) sequence of entity-type identi�ers; each of them can be pre�xed with - . If the
sequence is empty, the whole schema is output. Otherwise, if there are just identi�ers
pre�xed with - , those types are removed from the output. In the other cases, the set
of entity types included in the output is built as follows: ev ery identi�er without the
- pre�x adds to the output the type itself, all its supertypes, all the types it owns, and
all the types adjacent to the previous ones; every identi�er with the - pre�x removes
the corresponding entity type from the output. Each rule is a pplied following the
order of the parameters on the command line.

This mechanism allows you to print modularly parts of a huge s chema: for instance,
using ertool --dot -usr -grp -type you can omit the part of the schema handling au-

63

Chapter 8.ERtool

thorisation. On the contrary, in a large schema you would inc lude the types you are
interested in.

A useful feature of DOT (supported by ERtool) is the possibility of associating a URI
to a node. ERtool associates to each entity type and relationship type the relative
page of the automatically generated documentation. In othe r words, if everything is
set up correctly, you can look with a PDF viewer at your schema , and clicking on a
entity or relationship type you can immediately see all the r elevant information. If
you prefer, you can even generate an image (say, in PNG format) and a client-side
image map that will obtain the same effect in a browser.

Making this work is a bit tedious, because the links are local , and thus must be ab-
solute (usually your browser is already running somewhere, so we cannot rely on
its current directory being the one we need). However, they a re generated relatively
to the current directory, so when generating a DOT �le you must be in the same di-
rectory where you translated the DocBook documentation to H TML. Moreover, the
name of the directory containing the documentation must be e qual to the id attribute
of the root erl element.

Let us work out completely an example (the example works unde r most Linux dis-
tributions). Starting with library.xml , we �rst generate its documentation and the
DOT �le:

$ ertool --doc <library.xml >libraryDoc.xml
$ ertool --dot <library.xml >library.dot

Then, we produce the HTML documentation. Note that we set exp licitly the output
directory to match the id attribute of the root erl element:

$ db2html libraryDoc.xml -o library

Finally, assuming GraphViz has been installed successfully, we generate a graphical
display:

$ dot -Tps2 <library.dot >library.ps
$ ps2pdf -sPAPERSIZE=a0 library.ps

There are several options of dot that can be used to tweak the output (you can
even prefer the spring-embedder, neato, but remember to specify the option
-Goverlap=false). In the end, the resulting PDF �le will contain hyperlinks t o the
HTML documentation that makes it easy to browse the schema.

Figure 8-1. An example of automatically laid out entity-rel ationship diagram with
hyperlinked documentation.

64

Chapter 8.ERtool

The ERW Graphical Notation
The diagrams created by ERtool use graphical hints to suggest cardinality
constraints, subtyping and identi�cation functions. The c onventions used are,
unfortunately, mostly idiosyncratic. After a careful exam ination of the existing
notations, major theoretical or practical �aws where disco vered. In some cases, the
notation would have worked just for binary relationship typ es. In other cases, it was
utterly counterintuitive.

Thus, ERtool uses its own notation, which is directly derived from Chen's , but also
borrows from the standard mathematical notation, Object Ro le Modelling, and a bit
of fantasy.

Entity Types
Entity types are represented by boxes containing the type la bel. No attributes are
shown, as they are hyperlinked, and can thus be easily accessed. The border of ab-
stract types is dashed.

A

Figure 8-2. An entity type.

A

Figure 8-3. An abstract entity type.

Subtyping is represented by a dashed arrow from an entity typ e to its direct super-
type(s).

B A

Figure 8-4. An entity type with a subtype.

Weak entities are marked by a double frame, as in standard ent ity-relationship dia-
gram practise. Identi�cation functions are simply represe nted by a bold arrow from
the weak entity type to the owner (the name is not relevant, as there can be at most
one such function between two entity types)

65

Chapter 8.ERtool

B A

Figure 8-5. An weak entity type and its owner, linked by an ide nti�cation
function.

Relationship Types
Relationship types are represented by diamonds containing the type label (again, no
attributes are shown). Relationship types that are to be ins tantiated to multirelations
are shown with a thicker border (as multirelations are someh ow fatter than relations).

The representation of the remaining cardinality constrain ts is very simple: a cardi-
nality constraint of the form (1: x) adds a black dot at the end of the corresponding
leg. Thus, when you see a black dot you should read "mandatory " (as in Object Role
Modelling). A cardinality constraint of the form (x :1) , instead, generates an arrow
tip near the diamond. This corresponds to the mathematical fact (explained in de tail in
the Section calledCardinality Constraintsin Chapter 1) that such a constraints makes
a leg into a partial function from the entity set to the relati onship set. Moreover, it
shows immediately and intuitively that there is just one way to go from the entity
set to the relationship set (and thus to the other component t ype sets, as legs are
functions).

A R B

Figure 8-6. (0:N)/(0:N)

A R B

Figure 8-7. (1:N)/(0:N)

A R B

Figure 8-8. (0:N)/(1:N)

66

Chapter 8.ERtool

A R B

Figure 8-9. (1:N)/(1:N)

A R B

Figure 8-10. (0:M)/(0:M)

A R B

Figure 8-11. (1:M)/(0:M)

A R B

Figure 8-12. (0:M)/(1:M)

A R B

Figure 8-13. (1:M)/(1:M)

A R B

Figure 8-14. (0:1)/(0:N)

67

Chapter 8.ERtool

A R B

Figure 8-15. (1:1)/(0:N)

A R B

Figure 8-16. (0:1)/(1:N)

A R B

Figure 8-17. (1:1)/(1:N)

A R B

Figure 8-18. (0:N)/(0:1)

A R B

Figure 8-19. (1:N)/(0:1)

A R B

Figure 8-20. (0:N)/(1:1)

68

Chapter 8.ERtool

A R B

Figure 8-21. (1:N)/(1:1)

A R B

Figure 8-22. (0:1)/(0:1)

A R B

Figure 8-23. (1:1)/(0:1)

A R B

Figure 8-24. (0:1)/(1:1)

A R B

Figure 8-25. (1:1)/(1:1)

Notes
1. http://www.oasis-open.org/docbook/

2. http://www.research.att.com/sw/tools/graphviz/

3. http://www.research.att.com/sw/tools/graphviz/

69

Chapter 8.ERtool

70

Chapter 9. Standards and Browser Requirements

ERW heavily relies on browser compliance with respect to a nu mber of standards.
Presently only Mozilla (and thus Gecko-based browsers, such as Netscape 6
or Galeon), Konqueror (and thus KHTML-based browsers, such as Safari) and
MicrosoftÂ® Internet Explorer from version 5.5 up have a suf �ciently compliant
implementation of these standards to work properly. If ERW d etects a browser with
insuf�cient capabilities, it will warn the user.

HTML 4.01

ERW use all features of the W3C standard, including lesser-known elements
such asIFRAME, LABEL, FIELDSET and LEGEND.

CSS

ERW uses CSS1 and some features of CSS2.

The W3C Document Object Model

ERW access and dynamically updates HTML elements using Level 1 of the W3C
Document Object Model speci�cation, plus bits of Level 2 (ma inly for style).

ECMAScript (ECMA-262)

ERW uses as a scripting language the standardised version ofthe JavaScript lan-
guage originally developed by Netscape.

71

Chapter 9. Standards and Browser Requirements

72

Chapter 10. Useful Functions

In this chapter we discuss functions de�ned in the run-time e nvironment that also
users writing hooks could �nd useful.

Database Functions
When executing a hook, you can access some static functions of the ERWclass that
can simplify your access to the database. Note that all thesefunctions stop the current
script and write to the log �lein case of an error.

ERW::log (file , line , message , [level]);

Logs a message if the current logging level is equal to or below the one spec-
i�ed in the main con�guration �le. Possible levels are ERW_DEBUG, ERW_INFO,
ERW_WARNINGand ERW_ERROR(the default). The �rst two parameters are usually
�lled using the PHP macros __FILE__ and __LINE__ , respectively.

ERW::quote (string or array);

Quotes a string for SQL processing. Note that, when applied t o an array of
strings, it will quote by reference the whole array.

ERW::unquote (string);

Undoes what EWR::quote() did (but works by value).

ERW::query (query);

Executes the given query and returns the result. Database errors cause logging
and immediate exit.

ERW::select (select query);

It is identical to ERW::query() , but it automatically pre�xes its argument with
“ SELECT ”, so you can write things like ERW::select(" * from type"); .

ERW::getRow (select query);

It is identical to ERW::select() , but it automatically returns the �rst row of the
result set.

73

Chapter 10. Useful Functions

ERW::getOne (select query);

It is identical to ERW::getRow() , but it automatically returns the �rst column of
the row. Very useful when you just want a single datum from the database.

JavaScript Functions
To use these function, you must know some convention about th e HTML elements
identi�ers generated by ERW. This is necessary, as to createuseful hooks you need
to be able to detect which row of a table the user selected.

Each relevant HTML element in a page generated by ERW has a well-de�ned identi-
�er. In particular, whenever a list of elements is displayed to the user, the correspond-
ing table has an identi�er (in the XML sense) generated by pre �xing a letter followed
by the underscore character to a table name. More precisely:

• main lists are named m_type ;

• in the editing of relationships, the list that lets the user c hoose entities is
named s_ relationship-type , whereas the list showing relationships is named
r_ relationship-type ;

• lists that lets the user edit a �leset are named f_ entity-type _attribute-name .

Said that, you can use the following functions to discover wh ich element of a list has
been selected by the user:

int getSelectedId (elemId);

Given the identi�er of a list, this function returns the SQL i denti�er (i.e., the
value of the id column) of the selected element.

int getSelectedItem (elemId);

Given the identi�er of a list, this function returns the 0-ba sed index of the se-
lected row.

void openServiceWindow (url , name);

This function opens a new window without toolbar, menus, etc . and loads it
with the given URL. The given name will be juxtaposed to the cu rrent number
of milliseconds to generate a name for the window, so that two activations of the
same button actually open two different windows.

You should look at the example given in
the Section calledThe Button Hookin Chapter 4.

74

Chapter 11. Localisation

All ERW strings can be easily localised using the GNU gettext package. It is a fairly
standard way of giving translations of literal strings in va rious languages, and you
can �nd documentation about it at the GNU site 1. Moreover, there is limited support
for some locale-dependent quirks such as the decimal point.

There is also support for UTF-8, using the PHP mbstring extension.

Language Con�guration Variables
Locales (country-speci�c languages) are speci�ed in ERW as in RFC 2616 for the
Accept-Language HTTP header, that is, a two-letter language code, a hyphen and
a two-letter country code. Thus, it-IT is the Italian spoken in Italy, whereas en-UK
is British English.

If you want to support some languages, you must specify them i n the
$_ERW_supportedLocales con�guration variable . Then, for each language, you
have to provide a �le that, for each string used in ERW, provid es a translation. An
example of such a �le for Italian is given in the �le ERW.it.po that comes with
the distribution. You should write a similar �le for your lan guage (and possibly
send it to me2), compile it using the msgfmt utility coming with gettext, and �nally
installing the resulting ERW.mo�le in the proper directory (e.g., it/LC_MESSAGES for
Italian) inside the path speci�ed by the $_ERW_localePath con�guration variable .
Then, ERW will fetch from the browser the preferred language and try to match it
with one of those supported. You can also set a default locale (instead of en-US) or a
�xed locale (see Chapter 7).

The translation �le above accounts for all strings built int o ERW. However, you
may want to translate other parts of the user interface, such as labels, enumerative
types and help attributes. This is possible simply by creati ng translation �les named
ERW-id -labels , ERW-id -displays , ERW-id -enums and ERW-id -help , where id is the
identi�er of the root element of your ERL �le (e.g., "library " in our main example).
These �les should contain translations for all labels, disp lay customisation strings,
enumerative-type labels and help text (i.e., content of help attributes), respectively.

The translation �les are usually derived from templates pro duced by ERtool (as it
happens with templates produced by xgettext). Note that gettext offers several utili-
ties that makes translations much easier (automatic compendia, comparison of trans-
lation and template �les, and so on).

Other Localisation Variables
As already mentioned in the Section calledTheERW-conf.php Initialisation File in Chapter 7,
you have some con�guration variables that let you decide whi ch character to use as
decimal point and decimal comma. Moreover, you can choose between three date
formats, namely ISO (year/month/day, very sensible), Euro pean (day/month/year,
sensible), and US (month/day/year, broken).

UTF-8 Support
Natively, ERW runs using ISO-8859-1. This is the standard character encoding for
most PHP installation, and for several databases. However, using ISO-8859-1 is a
strong limiting factor if you plan to manage data in language s that are not covered
by its codepoints.

ERW supports fully UTF-8. As usual when character-encoding problems are
involved, the mechanism is not so simple. The �rst step to use UTF-8 support is to
make PHP UTF-8 aware. This requires compiling in PHP the mbstring extension,

75

Chapter 11. Localisation

which allows to handle transparently strings in several enc odings. Unfortunately,
several distributions do not release PHP with the mbstring extension enabled, so
you may have to recompile PHP (although if you have a decent pa ckaging system
this should turn out to be rather easy). To check whether your PHP installation has
mbstring , you can look at the output of php -m .

Once the mbstring extension has been loaded, you must enable UTF-8 support by
setting the con�guration variable $_ERW_utf8 and con�gure PHP to use UTF-8 by
modifying the following parameter in the PHP con�guration � le:

mbstring.func_overload = 7

It is essential that all functions are overloaded with those of mbstring , otherwise
ERW will stop and log an error message. Note that this paramet er may be set in the
main con�guration �le only.

ERW will generate a suitable HTML tag that will inform the bro wser that its output
is encoded as UTF-8. However, it is good practise to communicate this information
beforethe page is actually output, using an HTTP header; this can be obtained setting
the following PHP con�guration variable:

default_charset = "UTF-8"

The value of default_charset can also be changed locally, using an.htaccess �le.
Be sure to have the required permissions (AllowOverride Options), and just add a
line

php_value default_charset UTF-8

The rationale behind UTF-8 support is that everything should be in UTF-8. Thus, with
UTF-8 support activated web pages are output in UTF-8, input from the browser
is read in UTF-8, and data exchange with the database if performed using UTF-8
strings. This in�uences a number of settings, going from the DBMS internal encoding
to the terminal encoding, that must be set up correctly.

Note that usually an 8-bit clean database with work �awlessl y with UTF-8 support,
as UTF-8 has several good properties (e.g., lexicographical byte-by-byte ordering co-
incide with lexicographical character-by-character orde ring).

Warning
By default, ERtool will generated de�nition �les using ISO-8859-1. As
long as none of your labels, enumerative types, etc. is not US-ASCII,
this is not a problem. If, however, you plan to use arbitrary UTF-8 char-
acters in your labels, you should use the UTF-8 backend when produc-
ing de�nition �les with ERtool .

Notes
1. http://www.gnu.org/

2. mailto:vigna@acm.org

76

Chapter 12. Script Reference

This chapter gives an overview of the purpose of some scripts coming with ERW. Its
main purpose is to make you able to create a custom portal for a ccess to the ERW
editing and customisation pages.

ERW/checkERW.php

This script is never called during editing. It checks the str ucture of de�nition �les
and custom �les, looking for mistakes in array keys, paramet er types and so on. It is
a fundamental tool, as it is easy to make a typo. For a correct setup it should give no
message.

There are two ways to run this script: either you create a symb olic link to it in your
document root, and recall it as a URL (e.g., http://example.com/checkERW.php),
or you start it from the command line using php -C -f ERW/checkERW.php ; in the
latter case, your current directory must be your document ro ot. Note that if you in-
stalled the ERWdirectory in a special place, you will have to give the comple te path,
for instance, php -C -f /usr/share/php/ERW/checkERW.php

Note: It may happen that your custom �les contain some special code that sets some
customisations conditionally. Usually this code will not work when run out of context by
checkERW.php . However, checkERW.php sets a variable named $_ERW_check: by testing
whether the variable exists, you can discover whether you are being run by checkERW.php
and skip problematic code.

ERW/checkdb.php

This script is never called during editing. It checks the ove rall database integrity,
including referential integrity, logical integrity, corr espondence between ERW de�ni-
tion �les and SQL table de�nitions, and so on. For a correct sy stem it should give no
message. The methods to invoke this script are the same ofcheckERW.php.

Warning
Even for a small database, the running time of this script will certainly
exceed the default maximum execution time for a script set in the PHP
main con�guration �le. This should not be a problem, because the script
tries to set for itself unlimited execution time. However, if you set safe
mode on in the PHP main con�guration �le, the setting will hav e no
effect.

ERW.php

This script contains all of the common code.

list.php

This script creates a main list, that is, a list of entities of a given type, and provides
buttons to modify them. Its only parameter is type , the name of an entity, relationship
or dynamic enumerative type.

77

Chapter 12. Script Reference

form.php

This script creates a form to edit an entity. Its parameters are type , the name of an
entity, relationship or dynamic enumerative type, and id , which provides the SQL
identi�er of the element to edit (if it is zero, a new element w ill be created).

default.php

This script generates the CSS style sheet used by all other scripts. It can be tweaked
to suit your needs.

chown.php

This script allows to change the owner and the group of an elem ent. It has the same
parameters asform.php .

setprefs.php

This script allows the user to change some preferences, including font size and the
number of columns/rows of editing elements. It has no parame ters, as it will simply
try to set a cookie.

78

Chapter 13. Troubleshooting

As for any web application, troubleshooting a ERW installat ion is not easy. Many
components must collaborate correctly (HTTP server, DBMS, etc.) to get everything
working, and diagnosing which component caused the failure is often dif�cult. Some
of the most sophisticated scripts, for instance, are loaded in hidden frames and see-
ing their output is, at best, dif�cult. Here we suggest a numb er of checkpoints to
troubleshoot problems, starting from database rei�cation up to user interface cus-
tomisations. We assume that you have written a valid ERL �le— you can tell this by
running ERtool without options.

ERtool problems

1. The most common problem with ERtool is that it cannot �nd the ERL DTD. If
you did not insert all DTD-related �les into your SGML/XML ca talogues, you
must be sure that all DTD-related �les are located in the current directorywhenever
you use ERtool (also symbolic links will do the job).

2. If Java complains that it is not �nding some classes, check that the ERtool Java
archive is properly installed, that you have Java 1.4 or grea ter, and that you
have an XML parser (this should be automatically true with ve rsion 1.4).

PHP problems

1. Warning: The gettext PHP extension has not been loaded . This error
message in the logs means that your PHP installation does not include the
gettext extensions. If you want to use localisation, you must recon�gure
properly PHP

SQL problems

1. First of all, check that your database does not report any error when fed with
the SQL output of ERtool .

2. If errors are reported, check that they are not due to custom default function
speci�ed by default attributes. Strip all default attributes from your ERL �le
and try again.

3. If errors persist, check the same �le with at least another DBMS; it can happen
that some database does not support the fragment of SQL-99 used by ERW.

Con�guration and Customisation Problems

1. First of all, check that both checkERW.php and checkdb.php do not report any
error about your ERW con�guration and database content. In p articular, if
you upgraded from a version without original �lenames, a mis sing column
original will be reported in each �leset. Please regenerate the SQL code to
see how these columns should be created.

2. If you have custom �les, remove them gradually, so that you can tell whether
the problem is caused by a customisation or by a hook.

79

Chapter 13. Troubleshooting

When Nothing Seems to Work

1. First of all, check that you have the very last version of al l components in-
volved. This means a recent version of the DBMS, of the HTTP server, of PHP,
of PEAR, and of the browser.

2. Force your browser to reload all �les. Even if you have the l ast version of ERW,
your browser could be caching old scripts. If you can, erase t he cache alto-
gether.

3. Then, check the logs. You should have the maximum level of logging
enabled in your PHP con�guration �le (including logging of a ll warnings,
i.e., error_reporting = E_ALL) and also the ERW logging set to the
maximum level (i.e., $_ERW_logLevel=ERW_DEBUG;). Warnings about
usage of unde�ned variables usually show that you have misde �ned some
customisation variables or hooks. In this case, try �rst to d isable all custom
hooks and scripts.

4. If everything seems to be �ne from the PHP side, check with M ozilla and its
JavaScript console that no JavaScript errors are generated. Pleasetry with the
last Mozilla versionbefore doing any bug reporting.

Reporting Bugs
If you really think you hit a bug, please report it. It is impor tant that you provide

• the ERL �le that generates your database;

• any custom �le that are necessary to replicate the bug (but check carefullythat the
problem does not lie in the custom �les!);

• PHP, HTTP server and JavaScript logging.

Without these items, it is virtually impossible to diagnose a problem.

80

Appendix A. GNU Free Documentation License
Version 1.1, March 2000

Copyright Â© 2000 Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA. Everyone is permitted to copy and distribute verbatim
copies of this license document, but changing it is not allow ed.

Preamble
The purpose of this License is to make a manual, textbook, or other written docu-
ment “free” in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either co mmercially or noncommer-
cially. Secondarily, this License preserves for the author and publisher a way to get
credit for their work, while not being considered responsib le for modi�cations made
by others.

This License is a kind of “copyleft”, which means that deriva tive works of the doc-
ument must themselves be free in the same sense. It complements the GNU General
Public License, which is a copyleft license designed for fre e software.

We have designed this License in order to use it for manuals fo r free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited
to software manuals; it can be used for any textual work, rega rdless of subject matter
or whether it is published as a printed book. We recommend thi s License principally
for works whose purpose is instruction or reference.

Applicability and De�nitions
This License applies to any manual or other work that contain s a notice placed by
the copyright holder saying it can be distributed under the t erms of this License. The
“Document”, below, refers to any such manual or work. Any mem ber of the public
is a licensee, and is addressed as “you”.

A “Modi�ed Version” of the Document means any work containin g the Document or
a portion of it, either copied verbatim, or with modi�cation s and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter s ection of the Doc-
ument that deals exclusively with the relationship of the pu blishers or authors of
the Document to the Document's overall subject (or to relate d matters) and contains
nothing that could fall directly within that overall subjec t. (For example, if the Doc-
ument is in part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of hist orical connection with
the subject or with related matters, or of legal, commercial , philosophical, ethical or
political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is
released under this License.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License.

A “Transparent” copy of the Document means a machine-readab le copy, represented
in a format whose speci�cation is available to the general pu blic, whose contents
can be viewed and edited directly and straightforwardly wit h generic text editors
or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for in put to text formatters or
for automatic translation to a variety of formats suitable f or input to text formatters. A

81

Appendix A. GNU Free Documentation License

copy made in an otherwise Transparent �le format whose marku p has been designed
to thwart or discourage subsequent modi�cation by readers i s not Transparent. A
copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies includ e plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XM L using a publicly
available DTD, and standard-conforming simple HTML design ed for human mod-
i�cation. Opaque formats include PostScript, PDF, proprie tary formats that can be
read and edited only by proprietary word processors, SGML or XML for which the
DTD and/or processing tools are not generally available, an d the machine-generated
HTML produced by some word processors for output purposes on ly.

The “Title Page” means, for a printed book, the title page its elf, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title pa ge as such, “Title Page”
means the text near the most prominent appearance of the work 's title, preceding the
beginning of the body of the text.

Verbatim Copying
You may copy and distribute the Document in any medium, eithe r commercially or
noncommercially, provided that this License, the copyrigh t notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this L icense. You may not
use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compe nsation in exchange
for copies. If you distribute a large enough number of copies you must also follow
the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

Copying in Quantity
If you publish printed copies of the Document numbering more than 100, and the
Document's license notice requires Cover Texts, you must enclose the copies in covers
that carry, clearly and legibly, all these Cover Texts: Fron t-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The fr ont cover must present the
full title with all words of the title equally prominent and v isible. You may add other
material on the covers in addition. Copying with changes lim ited to the covers, as
long as they preserve the title of the Document and satisfy th ese conditions, can be
treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to � t legibly, you should put
the �rst ones listed (as many as �t reasonably) on the actual c over, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document nu mbering more than
100, you must either include a machine-readable Transparent copy along with each
Opaque copy, or state in or with each Opaque copy a publicly-a ccessible computer-
network location containing a complete Transparent copy of the Document, free of
added material, which the general network-using public has access to download
anonymously at no charge using public-standard network pro tocols. If you use the
latter option, you must take reasonably prudent steps, when you begin distribution
of Opaque copies in quantity, to ensure that this Transparen t copy will remain thus
accessible at the stated location until at least one year after the last time you distribute
an Opaque copy (directly or through your agents or retailers) of that edition to the
public.

82

Appendix A. GNU Free Documentation License

It is requested, but not required, that you contact the autho rs of the Document well
before redistributing any large number of copies, to give th em a chance to provide
you with an updated version of the Document.

Modi�cations
You may copy and distribute a Modi�ed Version of the Document under the condi-
tions of sections 2 and 3 above, provided that you release the Modi�ed Version under
precisely this License, with the Modi�ed Version �lling the rÃ´le of the Document,
thus licensing distribution and modi�cation of the Modi�ed Version to whoever pos-
sesses a copy of it. In addition, you must do these things in th e Modi�ed Version:

• Use in the Title Page (and on the covers, if any) a title distin ct from that of the
Document, and from those of previous versions (which should , if there were any,
be listed in the History section of the Document). You may use the same title as a
previous version if the original publisher of that version g ives permission.

• List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modi�cations in the Modi�ed Version, toge ther with at least �ve
of the principal authors of the Document (all of its principa l authors, if it has less
than �ve).

• State on the Title page the name of the publisher of the Modi�e d Version, as the
publisher.

• Preserve all the copyright notices of the Document.

• Add an appropriate copyright notice for your modi�cations a djacent to the other
copyright notices.

• Include, immediately after the copyright notices, a licens e notice giving the public
permission to use the Modi�ed Version under the terms of this License, in the form
shown in the Addendum below.

• Preserve in that license notice the full lists of Invariant S ections and required Cover
Texts given in the Document's license notice.

• Include an unaltered copy of this License.

• Preserve the section entitled “History”, and its title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modi �ed Version as given on
the Title Page. If there is no section entitled “History” in t he Document, create one
stating the title, year, authors, and publisher of the Docum ent as given on its Title
Page, then add an item describing the Modi�ed Version as stat ed in the previous
sentence.

• Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the orig inal publisher of the
version it refers to gives permission.

• In any section entitled “Acknowledgements” or “Dedication s”, preserve the sec-
tion's title, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given th erein.

• Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the section
titles.

• Delete any section entitled “Endorsements”. Such a section may not be included in
the Modi�ed Version.

83

Appendix A. GNU Free Documentation License

• Do not retitle any existing section as “Endorsements” or to c on�ict in title with any
Invariant Section.

If the Modi�ed Version includes new front-matter sections o r appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may
at your option designate some or all of these sections as invariant. To do this, add
their titles to the list of Invariant Sections in the Modi�ed Version's license notice.
These titles must be distinct from any other section titles.

You may add a section entitled “Endorsements”, provided it c ontains nothing but en-
dorsements of your Modi�ed Version by various parties -- for example, statements of
peer review or that the text has been approved by an organizat ion as the authoritative
de�nition of a standard.

You may add a passage of up to �ve words as a Front-Cover Text, a nd a passage
of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the
Modi�ed Version. Only one passage of Front-Cover Text and on e of Back-Cover Text
may be added by (or through arrangements made by) any one enti ty. If the Docu-
ment already includes a cover text for the same cover, previo usly added by you or by
arrangement made by the same entity you are acting on behalf o f, you may not add
another; but you may replace the old one, on explicit permiss ion from the previous
publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permis-
sion to use their names for publicity for or to assert or imply endorsement of any
Modi�ed Version.

Combining Documents
You may combine the Document with other documents released u nder this License,
under the terms de�ned in section 4 above for modi�ed version s, provided that you
include in the combination all of the Invariant Sections of a ll of the original docu-
ments, unmodi�ed, and list them all as Invariant Sections of your combined work in
its license notice.

The combined work need only contain one copy of this License, and multiple identi-
cal Invariant Sections may be replaced with a single copy. If there are multiple Invari-
ant Sections with the same name but different contents, make the title of each such
section unique by adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sec tions in the license notice of
the combined work.

In the combination, you must combine any sections entitled “ History” in the various
original documents, forming one section entitled “History ”; likewise combine any
sections entitled “Acknowledgements”, and any sections en titled “Dedications”. You
must delete all sections entitled “Endorsements.”

Collections of Documents
You may make a collection consisting of the Document and othe r documents released
under this License, and replace the individual copies of thi s License in the various
documents with a single copy that is included in the collecti on, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this Li cense into the extracted
document, and follow this License in all other respects rega rding verbatim copying
of that document.

84

Appendix A. GNU Free Documentation License

Aggregation With Independent Works
A compilation of the Document or its derivatives with other s eparate and indepen-
dent documents or works, in or on a volume of a storage or distr ibution medium,
does not as a whole count as a Modi�ed Version of the Document, provided no com-
pilation copyright is claimed for the compilation. Such a co mpilation is called an
“aggregate”, and this License does not apply to the other sel f-contained works thus
compiled with the Document, on account of their being thus co mpiled, if they are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to th ese copies of the Docu-
ment, then if the Document is less than one quarter of the enti re aggregate, the Docu-
ment's Cover Texts may be placed on covers that surround only the Document within
the aggregate. Otherwise they must appear on covers around the whole aggregate.

Translation
Translation is considered a kind of modi�cation, so you may d istribute translations of
the Document under the terms of section 4. Replacing Invaria nt Sections with transla-
tions requires special permission from their copyright hol ders, but you may include
translations of some or all Invariant Sections in addition t o the original versions of
these Invariant Sections. You may include a translation of t his License provided that
you also include the original English version of this Licens e. In case of a disagreement
between the translation and the original English version of this License, the original
English version will prevail.

Termination
You may not copy, modify, sublicense, or distribute the Docu ment except as expressly
provided for under this License. Any other attempt to copy, m odify, sublicense or
distribute the Document is void, and will automatically ter minate your rights under
this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain in
full compliance.

Future Revisions of This Licence
The Free Software Foundation may publish new, revised versi ons of the GNU Free
Documentation License from time to time. Such new versions w ill be similar in spirit
to the present version, but may differ in detail to address ne w problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing versio n number. If the Docu-
ment speci�es that a particular numbered version of this Lic ense "or any later ver-
sion" applies to it, you have the option of following the term s and conditions either
of that speci�ed version or of any later version that has been published (not as a
draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever publi shed (not as a draft)
by the Free Software Foundation.

Notes
1. http://www.gnu.org/copyleft/

85

Appendix A. GNU Free Documentation License

86

